
Accelerating linear system solutions using
randomization techniques

Marc Baboulin1, Jack Dongarra2,3,4, Julien Herrmann1, and Stanimire Tomov2

1 INRIA / Université Paris-Sud, France
2 University of Tennessee, USA

3 Oak Ridge National Laboratory, USA
4 University of Manchester, United Kingdom

LAPACK Working Note 246
May 2011

Abstract. We illustrate how linear algebra calculations can be enhanced
by statistical techniques in the case of a square linear system Ax = b. We
study a random transformation of A that enables us to avoid pivoting
and then to reduce the amount of communication. Numerical experi-
ments show that this randomization can be performed at a very afford-
able computational price while providing us with a satisfying accuracy
when compared to partial pivoting. This random transformation called
Partial Random Butterfly Transformation (PRBT) is optimized in terms
of data storage and flops count. We propose a solver where PRBT and
the LU factorization with no pivoting take advantage of the latest gen-
eration of hybrid multicore/GPU machines and we compare its Gflop/s
performance with a solver implemented in a current parallel library.

Keywords: dense linear algebra, linear systems, LU factorization, ran-
domization, multiplicative preconditioning, Graphics Processing Units.

1 Introduction

Pivoting is a classical method to ensure stability in linear system solutions. It
aims at preventing divisions by zero or too-small quantities in the process of
Gaussian Elimination (GE). The complete pivoting procedure permutes rows
and columns of the input matrix so that large nonzero matrix elements are
moved to the diagonal to be used as “pivot”. There is no floating-point oper-
ation in pivoting but it involves irregular movements (O(n3) comparisons for
the complete pivoting, where n is the matrix size). To reduce this overhead, the
usual technique is Gaussian Elimination with Partial Pivoting (GEPP) where
at each stage of the elimination, the pivot is searched within a column and
only rows are permuted, reducing the number of comparisons to O(n2). Note
that there also exists an intermediate pivoting strategy called “rook pivoting”
where the search for a pivot requires a number of comparisons comprised be-
tween O(n2) and O(n3) ([11, p. 159]). The stability of GE is strongly related

to the growth factor [11, p. 165] that measures how large the entries of the ma-
trix become in the process of elimination. As in many numerical linear algebra
algorithms, the choice of a pivoting strategy is the result of a trade-off between
stability concerns and Gflop/s performance. In respect with that, a good GE al-
gorithm should minimize the growth factor (to provide backward stability) and
the amount of pivoting (to avoid penalizing performance). The upper bounds
on the growth factor for GEPP might be much larger than for complete and
rook pivoting (see [11, p. 169]) and it can be unstable for some very specific
examples [23]. However GEPP turns out to be very stable in practice and has
been implemented in standard linear algebra libraries (e.g. LAPACK [1]).

With the advent of architectures such as multicore processors or Graphics
Processing Units (GPU), the growing gap between communication and compu-
tation efficiency made the communication overhead due to pivoting more criti-
cal. Moreover, in the LAPACK implementation of GEPP, rows are swapped at
once during pivoting, which inhibits the exploitation of more asynchronicity be-
tween block operations. Several pivoting techniques, potentially less stable than
partial or complete pivoting, can be used to minimize the communication like
pairwise pivoting [20] or threshold pivoting [7] (see [21] for a stability analysis
of these pivoting techniques). In particular pairwise pivoting has been imple-
mented in algorithms for multicore machines [4] but this generates a significant
overhead since the rows are swapped in pairs of blocks. We also mention, for mul-
tithreaded architectures, a pivoting technique called incremental pivoting in [17]
based on principles used for out-of-core solvers. Another pivoting technique has
been proposed in [10] that minimizes the number of messages exchanged dur-
ing the factorization, leading to a new class of algorithms often referred to as
“communication-optimal” algorithms. More specifically for GPUs, the pivoting
overhead was reduced by using an innovative data structure [22].

To illustrate the cost of pivoting, we plot in Figure 1 the percentage of time
due to pivoting in LU factorization (MAGMA5 implementation) for several sizes
of random matrices on a current hybrid CPU/GPU machine. We observe that
pivoting can represent more than 40% of the global factorization time for small
matrices and although the overhead decreases with the size of the matrix, it still
represents 17% for a matrix of size 10, 000.

The fact that pivoting remains a bottleneck for linear system solutions is a
motivation to present in this paper an alternative to pivoting thanks to random-
ization.

Statistical techniques have been widely used in linear algebra for instance for
solving linear systems using Monte Carlo methods [5] or computing condition
estimates [2, 13]. Statistical properties of Gaussian elimination have also been
studied for the non pivoting case [25] and for the partial and complete pivot-
ing case [21]. In this paper, we describe an approach based on randomization
where the original matrix A is transformed into a matrix that would be suffi-
ciently “random” so that, with a probability close to 1, pivoting is not needed.

5 Matrix Algebra on GPU and Multicore Architectures,
http://icl.cs.utk.edu/magma/

Fig. 1. Cost of pivoting in LU factorization (CPU 1 × Quad-Core Intel Core2 Processor
Q9300 @ 2.50 GHz GPU C2050 — 14 Multiprocessors (× 32 CUDA cores) @ 1.15
GHz).

This technique has been initially proposed in [15, 16] where the randomization is
referred to as Random Butterfly Transformation (RBT). It consists of a multi-
plicative preconditioning UTAV where the matrices U and V are chosen among
a particular class of random matrices called recursive butterfly matrices. Then
Gaussian Elimination with No Pivoting (GENP) is performed on the matrix
UTAV and, to solve Ax = b, we instead solve (UTAV)y = UT b followed by
x = V y. Note that, if we know in advance that we are not going to pivot, GENP
can be implemented as a very efficient fully BLAS 3 [6] algorithm. We study here
the random transformation with recursive butterfly matrices and minimize the
number of recursion steps which are required to get a satisfying accuracy. The
resulting transformation will be called Partial Random Butterfly Transformation
(PRBT). We propose a packed storage for the recursive butterfly matrices and
we show that the multiplication by UT and V can be efficiently computed by
taking advantage of the particular structure of the recursive butterflies.

We also show that in practice, at most two levels of recursion are required
for recursive butterflies to obtain an accuracy close to that of GEPP. Thus in
most cases we can avoid the computation of a full RBT (that would require
about n2log(n) flops) and the cost for the preconditioning reduces to ∼ 8n2

operations, which is negligible when compared to the cost of pivoting.

For the sake of stability we add some iterative refinement steps in the working
precision where the stopping criterion is the component-wise relative backward
error. For matrices that we use in our experiments, we never need more than
one iteration. An important observation is that the 2-norm condition number of
the initial matrix A is kept almost unchanged in the PRBT randomization.

Finally we present performance results for a PRBT solver on a state-of-the-
art hybrid multicore/GPU machine and we compare the Gflop/s performance of
this solver with a solver from the parallel library MAGMA.

2 Randomization

2.1 Definitions

We define here two types of matrices that will be used in the random trans-
formation. We follow the definitions given in [15] in the particular case on real
arithmetic entries.

Definition 1 A butterfly matrix is defined as any n-by-n matrix of the form:

B =
1√
2

(
R0 R1

R0 −R1

)

where n ≥ 2 and R0 and R1 are random diagonal and nonsingular n/2-by-n/2
matrices.

Note that a butterfly matrix B can also be expressed as

B =
1√
2

(
In/2 In/2
In/2 −In/2

)(
R0 0
0 R1

)
,

where In/2 denotes the identity matrix of size n/2 i.e. B is a product of an or-
thogonal matrix and a random diagonal matrix. Then the possible orthogonality
properties of B depend on how the random diagonal is obtained.

Definition 2 A recursive butterfly matrix of size n and depth d is a product of
the form

W<n,d> =

B
<n/2d−1>
1 · · · 0

...
. . .

...

0 · · · B<n/2
d−1>

2d−1

× ...×

B
<n/4>
1 0 0 0

0 B
<n/4>
2 0 0

0 0 B
<n/4>
3 0

0 0 0 B
<n/4>
4

×

(
B
<n/2>
1 0

0 B
<n/2>
2

)
×B<n>,

where the B
<n/2k−1>
i are butterfly matrices of size n/2k−1, k = 1, . . . , d.

Note that this definition requires that n is a multiple of 2d−1 which can
be always obtained by “augmenting” the matrix A with additional 1’s on the
diagonal. Note also that it differs from the definition of a recursive butterfly
given in [15] which corresponds to the special case where d = log2n+ 1, i.e. the
first term of the product expressing W<n,d> is a diagonal matrix of size n.

For instance, if n = 4 and d = 2, then the recursive butterfly W<4,2> would
be defined by

W<4,2> =

(
B<2>

1 0
0 B<2>

2

)
×B<4>

=
1

2

r<2>
1 r<2>

2 0 0
r<2>
1 −r<2>

2 0 0
0 0 r<2>

3 r<2>
4

0 0 r<2>
3 −r<2>

4

r<4>
1 0 r<4>

3 0
0 r<4>

2 0 r<4>
4

r<4>
1 0 −r<4>

3 0
0 r<4>

2 0 −r<4>
4

=
1

2

r<2>
1 r<4>

1 r<2>
2 r<4>

2 r<2>
1 r<4>

3 r<2>
2 r<4>

4

r<2>
1 r<4>

1 −r<2>
2 r<4>

2 r<2>
1 r<4>

3 −r<2>
2 r<4>

4

r<2>
3 r<4>

1 r<2>
4 r<4>

2 −r<2>
3 r<4>

3 −r<2>
4 r<4>

4

r<2>
3 r<4>

1 −r<2>
4 r<4>

2 −r<2>
3 r<4>

3 r<2>
4 r<4>

4

 ,

where the r<j>i are real random entries.
Our motivation here is to minimize the computational cost of the RBT de-

fined in [15] by considering a number of recursions d such that d � n resulting
in the transformation defined below.

Definition 3 A partial random butterfly transformation (PRBT) of depth d of
a square matrix A is the product:

Ar = UTAV

where U and V are recursive butterflies of depth d.

Then, the process to solve the general linear system Ax = b is the following:

1. Compute the randomized matrix Ar = UTAV , with U and V recursive
butterflies

2. Factorize Ar with GENP

3. Solve Ary = UT b

4. Solution is x = V y

We recall that the GENP algorithm which is performed on Ar is unstable,
due to a possibly large growth factor. We can find in [15] explanations about how
RBT might modify the growth factor of the original matrix A. To ameliorate this
potential instability, we systematically add in our method iterative refinement
in the working precision as indicated in [11, p. 232].

2.2 Packed storage for recursive butterfly matrices

We describe here how a butterfly matrix and a recursive butterfly matrix can be
stored compactly using respectively a vector and a matrix.

Following Section 2.1, a butterfly matrix has the form

B<n> =
1√
2

(
R0 R1

R0 −R1

)

where R0 and R1 are diagonal random matrices. Then B<n> can be stored
compactly in a vector w of size n, where the n/2 first values are the coefficients
of R0 and the n/2 last ones are the coefficients of R1.

Let us now consider a recursive butterfly of depth d expressed using butterfly
matrices as the product

W<n,d> =

B
<n/2d−1>
1 · · · 0

...
. . .

...

0 · · · B<n/2
d−1>

2d−1

× ...×
(
B
<n/2>
1 0

0 B
<n/2>
2

)
×B<n>.

We observe that each term of the product can be stored in a vector of size n.
Thus W<n,d> can be stored compactly in a matrix Wp of size n×d where the k-

th column represents the matrice

B
<n/2k−1>
1 · · · 0

...
. . .

...

0 · · · B<n/2
k−1>

2k−1

 , which means

that each vector Wp((i − 1) ∗ n
2k−1 + 1 : i ∗ n

2k−1 , k) stores the butterfly matrix

B
<n/2k−1>
i . As a result, W<n,d> can be obtained at once by choosing randomly

the corresponding n-by-d matrix Wp.

2.3 Computational cost of the randomized matrix

In the computation of UTAV , where U and V are recursive butterflies, the
elementary operation is a multiplication of a dense matrix A to the left and to
the right by a butterfly matrix.

Let B =

(
R0 R1

R0 −R1

)
and B′ =

(
R′0 R′1
R′0 −R′1

)
be two butterfly matrices stored

in vectors w and w′ using the packed storage defined in Section 2.2. We observe
that a multiplication on both sides of A by B and B′ can be expressed as

BTAB′ =
1

2

(
R0 R0

R1 −R1

)
A

(
R′0 R′1
R′0 −R′1

)

=
1

2

(
R0 R0

R1 −R1

)(
A11 A12

A21 A22

)(
R′0 R′1
R′0 −R′1

)

=
1

2

(
R0 0
0 R1

)
C

(
R′0 0
0 R′1

)
=

1

2
diag(w) C diag(w′),

where C =

(
A11 +A12 +A21 +A22 A11 −A12 +A21 −A22

A11 +A12 −A21 −A22 A11 −A12 −A21 +A22

)
.

Then (BTAB′)i,j = wiCi,jw
′
j and the computation of BTAB′ requires 4n2 flops.

This kernel corresponds to a PRBT of depth 1 and will be applied for computing
the successive products of the form BTAB′ involved in the PRBT. For instance,
for d = 2 we have

W<n,2> = BT
(
BT1 0
0 BT2

)
A

(
B′1 0
0 B′2

)
B′

= BT
(
BT1 A11B

′
1 B

T
1 A12B

′
2

BT2 A21B
′
1 B

T
2 A22B

′
2

)
B′,

which involves four elementary products of the form BTAB′ with butterflies of
size n/2 and one with butterflies of size n. This requires 8n2 flops.

More generally, let A be a square matrix of size n and M(n) the computa-
tional cost of a multiplication BTAB′ with B and B′ butterflies of size n, then
the number of operations involved in the computation of Ar by a PRBT of depth
d is

C(n, d) =

d∑
k=1

((2k−1)2×M(n/2k−1)) =

d∑
k=1

((2k−1)2×4(n/2k−1)2) =

d∑
k=1

(4n2) = 4dn2.

Note that the maximum cost obtained in the case of an RBT as described
in [15] is

C(n, log2n+ 1) ' 4n2log2n,

and then this cost is significantly reduced by considering numbers of recursions
d such that d� n.

Similarly to the product of a recursive butterfly by a matrix, the product of
a recursive butterfly by a vector does not require the explicit formation of the

recursive butterfly since the computational kernel will be a product of a butterfly
by a vector, which involves O(n) operations. As a result, the computation of UT b
and V y (steps (3) and (4) of the solution process given after Definition 3) can be
performed in O(dn) flops and will be neglected in the remainder of this paper,
for small values of d.

2.4 Condition number of the randomized matrix

A major concern in the multiplicative preconditioning involved in PRBT is
to keep the condition number as “unchanged” as possible. Let us denote by
cond2(A) the 2-norm condition number of a square matrix A and defined by
cond2(A) = ‖A‖2

∥∥A−1∥∥
2
. Then, with the notations of Section 2.1, we have

cond2(Ar) ≤ cond2(U) cond2(A) cond2(V) .

Ideally, a recursive butterfly matrix will have a condition number close to 1 so
that the condition number of Ar will be close to that of A. In general random
matrices tend to be well conditioned (see [8]) but let us study here the particular
case of the recursive butterfly matrices.

For an elementary butterfly matrix B of size n, we have

BTB =
1√
2

(
R0 R0

R1 −R1

)
.

1√
2

(
R0 R1

R0 −R1

)
=

(
R2

0 0
0 R2

1

)
= diag(r1, . . . , rn)2,

where the ri are random entries and then we obtain (using e.g. [18, p. 231])

cond2(B) =
√

cond2(BTB) =
max |ri|
min |ri|

. (1)

It comes from Equation (1) that the random variables ri should not be too
small to avoid having a large condition number for B.

More generally, a recursive butterfly of depth d is a product of block-diagonal
matrices having the form B = diag(B1, . . . , Bp) where 1 ≤ p ≤ 2d−1 and the Bi
are butterfly matrices of size n/p. Therefore we have

BTB =

BT1 B1 · · · 0
...

. . .
...

0 · · · BTp Bp

 ,

and cond2(B) can also be expressed as max |ri|
min |ri| where the ri are random numbers

that obviously take values different from those in Equation (1).

If the ri are such that |ri| ∈ [α, β] (α > 0), then we have cond2(B) ≤ β
α and

thus, for U being a recursive butterfly of depth d, we get

cond2(U) ≤
(
β

α

)d
. (2)

This result will motivate the type of random values used in forming the re-
cursive butterflies. In particular, since the bound on the condition number grows
with the number of recursions, βα should be close to 1. In [15], the random diag-
onal values used in the butterflies are generated as exp(r10), where r is randomly
chosen in [− 1

2 ,
1
2], and this choice is justified by the fact that the determinant

of a butterfly has an expected value 1. It satisfies also our requirement because
β
α = e0.1 ≈ 1.1052. Experiments will be performed in Section 3.2 to confirm the
good behaviour of this randomization process in terms of conditioning.

3 Numerical experiments

3.1 Accuracy of PRBT

In this section, we compare the accuracy of the linear system solution obtained
using GEPP (as it is implemented in LAPACK) and PRBT followed by GENP
(in the remainder, this solver will be simply denoted as PRBT). We also compare
with GENP and QR. We recall here that the Householder QR factorization is
always a good option for solving square linear systems because of its backward
stability property (see [11, p. 361]) and due to the fact that we do not have to
worry about large growth factors (however the computational cost is about twice
that of LU).

Experiments were carried out using Matlab version 7.12 (R2011a) on a ma-
chine with a precision of 2.22 ·10−16. In Table 1, we consider test matrices of size
1024 where the first 11 matrices come from the Matlab gallery and Higham’s
Matrix Computation Toolbox [11], the 12-th matrix comes from [9], the test
cases number 13 to 16 come from [21] and the last 2 matrices are defined in [15].
Similarly to [15], the random diagonal matrices used to generate the butterfly
matrices described in Definition 1 have diagonal values exp(r10) where r is chosen
from the uniform distribution in [− 1

2 ,
1
2] (using the matlab instruction rand). For

all test matrices, we consider the exact solution x = [1 1 . . . 1] and the right-hand
side is set as b = Ax.

We report in Table 1 the 2-norm condition number of the original matrix
(Matlab function cond) and the component-wise backward error resulting from
the four solvers considered in this study. This error is defined in [14] and ex-
pressed by

ω = max
i

|Ax̂− b|i
(|A| · |x̂|+ |b|)i

,

where x̂ is the computed solution. We also report the number of recursion steps
(REC) used in the PRBT algorithm for the recursive butterflies (parameter d

in Definition 3). For better stability, we add systematically iterative refinement
(in the working precision) when we use PRBT. Similarly to [3, 19], the iterative
refinement algorithm is activated while ω > (n + 1)u, where u is the machine
precision. The number of iterations (IR) in the iterative refinement process is
also listed in Table 1.

We observe that we never need more than two recursions, which involves for
PRBT an extra computational cost lower or equal to 8n2 operations. The two
matrices gfpp [12] and Foster [9] are well-known pathological matrices that
maximize the growth factor. For these matrices, PRBT destroys the original
structure and gives very accurate results (for these two matrices, one step of
iterative refinement was also required for QR to get the best accuracy). GENP
fails for 4 matrices (fiedler, {−1, 1}, {0, 1}, |i−j|) and for each of them, PRBT
is as accurate as GEPP. For the matrices fielder, |i− j| and max(i, j), PRBT
gives results that are slightly better than QR.

For 3 matrices (chebspec, condex, randcorr), using PRBT is not useful
because GENP gives a good solution. However this shows that these matrices
are not degenerated by the randomization applied to them. On some matrices
(circul, augment, normaldata, [−1, 1], [0, 1]), the accuracy of GENP can be
improved just by adding iterative refinement and PRBT is not useful. Iterative
refinement turns out to be necessary in some cases when using PRBT but with
never more than one iteration. Note that when matrices are orthogonal (orthog
or proportional to an orthogonal matrix (Hadamard)), Gaussian elimination has
not to be used. These 2 examples have been used only for purpose of testing. In
the case of integer-valued matrices (max(i, j), Hadamard), PRBT destroys the
integer structure and transform the matrix into a real-valued one. Finally, in all
test cases considered in these experiments, PRBT provides us with a satisfying
accuracy while requiring an extra computational cost of O(n2) operations (com-
ing from one or two recursions and possibly one step of iterative refinement).

3.2 Tests on condition numbers

In the previous experiments we also computed, for all test matrices, the con-
dition number of the randomized matrix. As expected from the comments in
Section 2.4, cond2(Ar) is of same order of magnitude as cond2(A) and there-
fore is not listed in Table 1.

Let us now study in more details the condition number of the recursive
butterflies resulting from the random distribution chosen in our experiments. We
represent in Figure 2 the 2-norm condition number (computed using the Matlab
function cond) of the recursive butterflies used in the experiments described in
Section 3.1. We plot, for each recursion depth, the average condition number
obtained for a sample of 500 recursive butterflies of size 1024 and the upper
bound on this condition number as expressed in Equation (2). We observe that
for small numbers of recursions, the average condition number is very close to

its bound (e.g. for d = 2, cond2(U) = 1.2026 and
(
β
α

)d
= 1.2214) and that for

larger numbers of recursions, the difference between these quantities becomes

Table 1. Comparison of linear system solution using PRBT with other solvers on a
collection of matrices.

Matrix Cond GENP GEPP QR PRBT REC IR

augment 4 · 104 1.28 · 10−14 2.28 · 10−15 2.99 · 10−16 2.81 · 10−16 1 1

gfpp 5 · 102 9.01 · 10−01 6.88 · 10−01 1.06 · 10−16 1.27 · 10−16 1 1

chebspec 2 · 1014 1.19 · 10−15 3.29 · 10−16 5.22 · 10−15 3.23 · 10−14 1 0

circul 1 · 103 1.74 · 10−13 1.66 · 10−15 2.66 · 10−15 2.66 · 10−15 1 0

condex 1 · 102 7.32 · 10−15 5.98 · 10−15 8.34 · 10−15 6.50 · 10−15 1 0

fiedler 7 · 105 Fail 2.11 · 10−15 1.54 · 10−14 7.90 · 10−15 1 0

Hadamard 1 · 100 0 · 100 0 · 100 7.58 · 10−16 8.33 · 10−15 1 0

normaldata 3 · 104 2.03 · 10−12 6.30 · 10−15 2.38 · 10−16 3.30 · 10−16 1 1

orthog 1 · 100 5.64 · 10−01 4.33 · 10−15 3.70 · 10−16 4.31 · 10−16 2 1

randcorr 3 · 103 5.12 · 10−16 4.04 · 10−16 5.73 · 10−16 5.92 · 10−16 1 0

toeppd 7 · 105 2.53 · 10−13 2.60 · 10−15 8.39 · 10−15 5.71 · 10−15 1 0

Foster 5 · 102 1 · 100 1 · 100 1.90 · 10−16 3.30 · 10−16 2 1

[−1, 1] 2 · 103 2.19 · 10−11 5.19 · 10−15 2.33 · 10−16 2.35 · 10−16 1 1

[0, 1] 4 · 104 1.97 · 10−12 2.85 · 10−15 2.15 · 10−15 1.79 · 10−15 1 1

{−1, 1} 4 · 103 Fail 3.96 · 10−15 2.38 · 10−16 2.70 · 10−16 2 1

{0, 1} 5 · 104 Fail 4.39 · 10−15 2.19 · 10−15 1.09 · 10−15 2 1

|i− j| 7 · 105 Fail 3.33 · 10−16 1.54 · 10−14 6.05 · 10−15 1 0

max(i, j) 3 · 106 2.16 · 10−14 1.21 · 10−15 1.46 · 10−14 2.27 · 10−15 1 1

larger (e.g. for d = 10, cond2(U) = 1.5183 and
(
β
α

)d
= 2.7183) and then the

upper bound becomes more pessimistic. This is not surprising since for small
values of d the difference comes mainly from the statistics and for large values,
the difference comes also from the nature of the upper bound which is a product
of d bounds as explained in Section 2.4. However, as shown in Section 3.1, two
recursions are in general enough to get a satisfying accuracy and in that case
recursive butterflies are very well conditioned.

Fig. 2. Average 2-norm condition number for recursive butterfly matrices (samples of
500 matrices) for a fixed matrix size n = 1024 .

3.3 Preliminary performance results

In this section, we present a first implementation of PRBT on a current hybrid
CPU/GPU architecture. The GPU is a Fermi Tesla S2050 (1.15 GHz, 2687.4
MB memory) and its multicore host is a 48 cores system (4 sockets x 12 cores)
AMD Opteron 6172 (2.1 GHz). On the multicore we use LAPACK and BLAS
from MKL 10.2. The PRBT solver is compared with a GEPP solver as it is
implemented in the MAGMA 1.0 library. In both cases the multicore host is
involved just in the panel factorization, the update of the trailing matrix being
performed on the GPU. In our implementation of PRBT, the randomization is
performed on the CPU (with 2 recursions). Figure 3 shows the performance in
Gflop/s for both solvers using double precision arithmetic and we observe that
PRBT achieves much better performance depending on the size of the matrix.
For small problems the gain is much bigger (from 100% for size 1,000 to 33%
for size 3,000). In the range 4,000-8,000, the gain obtained by using PRBT is
about 20% and for matrix sizes larger than 9,000, the improvement is around 10%

showing that asymptotically, the two performances should be close. We point out
that these results are obtained using a GEPP implementation specifically tuned
for this architecture while PRBT could be still improved by additional tuning
and use of a scheduler (e.g. QUARK [24]). Improvement could also be obtained
by taking advantage of the multicore in the update of the trailing matrix. In this
respect, the performance results of PRBT are very promising.

Fig. 3. Performance for PRBT and GEPP in double precision arithmetic (4 × 12-Core
AMD Opteron 6172 @ 2.1 GHz - GPU Fermi Tesla S2050 @ 1.15 GHz).

4 Conclusion and future work

We proposed a linear system solver where the LU factorization is performed with-
out pivoting on a matrix randomized by PRBT. We showed that PRBT does not
alter the 2-norm condition number of the original matrix and that it requires in
practice a low computational cost (O(n2) operations) and a few additional data
storage. We demonstrated that the obtained accuracy is similar to that of GEPP
on a reasonable range of matrices. We also gave first performance results on a
current hybrid CPU/GPU architecture where the pre-processing due to random-
ization is performed on the CPU and the LU factorization without pivoting is a
hybrid CPU/GPU program. The resulting PRBT solver outperforms the GEPP
solver as it is implemented in the MAGMA library. The PRBT method shall be
integrated into the MAGMA library jointly with a fully BLAS 3 GENP solver.
The latter could be indeed very useful to factorize efficiently matrices for which
the growth factor is O(1) and therefore pivoting is not needed (see examples of
such classes of matrices in [11, p. 166]). Further experiments will be performed
on multicore architectures which will allow performance comparisons with other

solvers (e.g. from the PLASMA6 library). which are not necessarily based on
GEPP and enable more extensive testing.

References

1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK user’s
guide, SIAM, 1999, Third edition.

2. M. Arioli, M. Baboulin, and S. Gratton, A partial condition number for linear least-
squares problems, SIAM J. Matrix Anal. and Appl. 29 (2007), no. 2, 413–433.

3. M. Arioli, J. W. Demmel, and I. S. Duff, Solving sparse linear systems with sparse
backward error, SIAM J. Matrix Anal. and Appl. 10 (1989), no. 2, 165–190.

4. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear
algebra algorithms for multicore architectures, Parallel Computing 35 (2009), 38–
53.

5. I. Dimov, Monte carlo methods for applied scientists, Word Scientific, 2008.
6. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, A set of Level 3 Basic Linear

Algebra Subprograms, ACM Trans. Math. Softw. 16 (1990), 1–17.
7. I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices,

Clarendon Press, Oxford, 1986.
8. A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J.

Matrix Anal. and Appl. 9 (1988), no. 4, 543–560.
9. L. V. Foster, Gaussian elimination with partial pivoting can fail in practice, SIAM

J. Matrix Anal. and Appl. 15 (1994), no. 4, 1354–1362.
10. L. Grigori, J. W. Demmel, and H. Xiang, Communication avoiding Gaussian elim-

ination, (2008), In Proceedings of the IEEE/ACM SuperComputing SC08 Confer-
ence.

11. N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, 2002, Second
edition.

12. N. J. Higham and D. J. Higham, Large growth factors in Gaussian elimination
with pivoting, SIAM J. Matrix Anal. and Appl. 10 (1989), no. 2, 155–164.

13. C. S. Kenney, A. J. Laub, and M. S. Reese, Statistical condition estimation for
linear least squares, SIAM J. Matrix Anal. and Appl. 19 (1998), 906–923.

14. W. Oettli and W. Prager, Compatibility of approximate solution of linear equations
with given error bounds for coefficients and right-hand sides, Numerische Mathe-
matik 6 (1964), 405–409.

15. D. S. Parker, Random butterfly transformations with applications in computa-
tional linear algebra, Technical Report CSD-950023, Computer Science Depart-
ment, UCLA, 1995.

16. D. S. Parker and B. Pierce, The randomizing FFT: an alternative to pivoting in
Gaussian elimination, Technical Report CSD-950037, Computer Science Depart-
ment, UCLA, 1995.

17. G. Quintana-Orti, E. S. Quintana-Orti, R. A. van de Geijn, F. G. van Zee, and
E. Chan, Programming algorithms-by-blocks for matrix computations on multi-
threaded architectures, ACM Trans. Math. Softw. 36 (2009), no. 3, 1–26.

18. Y. Saad, Iterative methods for sparse linear systems, SIAM, 2000, Second edition.

6 Parallel Linear Algebra for Scalable Multi-core Architectures,
http://icl.cs.utk.edu/plasma/

19. R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimina-
tion, Math. Comput. 35 (1980), 817–832.

20. D. C. Sorensen, Analysis of pairwise pivoting in gaussian elimination, IEEE Trans.
Comput. 34 (1984), 274–278.

21. L. N. Trefethen and R. S. Schreiber, Average-case stability of Gaussian elimination,
SIAM J. Matrix Anal. and Appl. 11 (1990), no. 3, 335–360.

22. V. Volkov and J. W. Demmel, LU, QR and Cholesky factorizations using vector
capabilities of GPUs, Technical Report UCB/EECS-2008-49, University of Califor-
nia, Berkeley, 2008, Also LAPACK Working Note 202.

23. S. J. Wright, A collection of problems for which Gaussian elimination with partial
pivoting is unstable, SIAM J. Sci. Statist. Comput. 14 (1993), 231–238.

24. A. YarKhan, J. Kurzak, and Dongarra J., QUARK users’ guide: QUeueing And
Runtime for Kernels, Technical Report ICL-UT-11-02, University of Tennessee,
Innovative Computing Laboratory, 2011.

25. M. Yeung and T. F. Chan, Probabilistic analysis of Gaussian elimination without
pivoting, SIAM J. Matrix Anal. and Appl. 18 (1997), no. 2, 499–517.

