
Hydrodynamic Computation with Hybrid Programming on
CPU-GPU Clusters

Tingxing Dong∗, Veselin Dobrev†, Tzanio Kolev†, Robert Rieben†,
Stanimire Tomov∗, Jack Dongarra∗

∗Innovative Computing Laboratory, University of Tennessee, Knoxville
†Lawrence Livermore National Laboratory

∗tdong, tomov, dongarra@eecs.utk.edu
†dobrev1,kolev1,rieben1@llnl.gov

ABSTRACT
The explosion of parallelism and heterogeneity in today’s
computer architectures has created opportunities as well as
challenges for redesigning legacy numerical software to har-
ness the power of new hardware. In this paper we address
the main challenges in redesigning BLAST – a numerical
library that solves the equations of compressible hydrody-
namics using high order finite element methods (FEM) in
a moving Lagrangian frame – to support CPU-GPU clus-
ters. We use a hybrid MPI + OpenMP + CUDA program-
ming model that includes two layers: domain decomposed
MPI parallelization and OpenMP + CUDA acceleration in
a given domain. To optimize the code, we implemented cus-
tom linear algebra kernels and introduced an auto-tuning
technique to deal with heterogeneity and load balancing at
runtime. Our tests show that 12 Intel Xeon cores and two
M2050 GPUs deliver a 24× speedup compared to a single
core, and a 2.5× speedup compared to 12 MPI tasks in
one node. Further, we achieve perfect weak scaling, demon-
strated on a cluster with up to 64 GPUs in 32 nodes. Our
choice of programming model and proposed solutions, as re-
lated to parallelism and load balancing, specifically targets
high order FEM discretizations, and can be used equally
successfully for applications beyond hydrodynamics. A ma-
jor accomplishment is that we further establish the appeal of
high order FEMs, which despite their better approximation
properties, are often avoided due to their high computational
cost. GPUs, as we show, have the potential to make them
the method of choice, as the increased computational cost
is also localized, e.g., cast as Level 3 BLAS, and thus can
be done very efficiently (close to “free” relative to the usual
overheads inherent in sparse computations).

General Terms
Algorithms, Performance, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344, LLNL-CONF-607852 ...$5.00.

Keywords
CFD, compressible hydrodynamics, hybrid programming,
CUDA, OpenMP, finite element methods

1. INTRODUCTION
Currently, more and more computing clusters are equipped

with different types of computational units. In particu-
lar, systems hosting both multicore CPUs and accelerators
like GPUs are widely adopted in high-performance comput-
ing. The popularity of such heterogeneous architectures
is largely due to the need for both high performance and
power efficiency. GPUs are attractive due to their high
floating-point operation capability and energy efficiency ad-
vantage over CPUs for highly data-parallel computations,
while CPUs have advantage in sequential or just difficult to
data-parallelize computations. This creates an opportunity
for porting complex applications to hybrid architectures be-
cause by combining GPUs and CPUs one can design and
schedule the computation in a way that exploits both the
GPU and CPU strengths while avoiding their weaknesses.
However, harnessing this potential is a challenge for devel-
opers. In this paper, we use a heterogeneous programming
model to accelerate a hydrodynamic code named BLAST on
heterogeneous CPU-GPU clusters.

BLAST is a research code developed at the Lawrence Liv-
ermore National Laboratory (LLNL) to solve the equations
of compressible hydrodynamics using high order finite el-
ement methods (FEM). It supports arbitrary order space
and time discretizations [1]. Like other computational fluid
dynamics (CFD) applications, BLAST makes use of explicit
time evolving iterations of computationally intensive kernels.
The most floating point intensive part of BLAST is the con-
struction of so called ”corner force” matrices which can take
up to 55%-80% of the total run time depending on the or-
der of the finite element method and the spatial dimension
of the problem. To reveal more refined physical features,
high order numerical methods (p-refinement) and/or high
resolution meshes (h-refinement) are introduced which in-
evitably lead to larger floating point operations and longer
run times. For a given number of degrees of freedom, high
order methods are more computationally intensive than low
order methods since they couple each degree of freedom with
more and more of its neighbors on the computational mesh.
This means that high order methods perform many more
floating point operations per memory access than low order

methods. The corner force kernel in BLAST is purely lo-
cal and FLOP-intensive with relatively small I/O overhead.
Our assumption is that these characteristics make BLAST
suitable to accelerate on GPUs. We adopt a hybrid pro-
gramming approach to implement such an acceleration on
GPU clusters.

In recent years, MPI-GPU has been widely adopted to
speedup applications. D.A.Jacobsen implemented an in-
compressible flow solver with MPI-CUDA on GPU clusters
[2]. J.C.Thibault implemented incompressible flow compu-
tations with a Pthreads-CUDA approach [3]. N.Maruyama
used MPI-CUDA for stencil computations [4]. J.Holewinski
generalized a scheme for stencil computations on both NVIDIA
and AMD GPUs [5]. However, most papers focus mainly on
incompressible CFD benchmarks based on structured grids
compatible with finite difference methods (FDM) which are
inherently block structured in nature. Here, we consider the
case of compressible CFD problems based on unstructured
finite element methods (FEM) requiring the solution of both
dense and sparse linear algebra problems.

In most previous MPI-CUDA applications, one CPU core
takes control of only one GPU card in each MPI task, while
the remaining CPU cores are ignored [6]. Because CPU
cores are often much more than the number of GPUs in one
node, this programming practice indicates that hardware re-
sources are not fully exploited (see Section 4). To maximize
usage of both multicore and GPUs, we use a hybrid MPI
+ OpenMP + CUDA programming model. In our model,
the top level is still MPI based for inter-node communica-
tion. In the second level, we use a combination of CUDA
+ OpenMP to accelerate the corner force calculation using
multiple cores with OpenMP and multiple NVIDIA GPUs
with CUDA. To our knowledge, this is the first time that
this complete model has been applied in a finite element
Lagrangian hydrodynamics application.

2. THE BLAST ALGORITHM
The BLAST C++ code uses high order finite element

methods in a moving Lagrangian frame to solve the Euler
equations of compressible hydrodynamics. It supports 2D
(triangles, quads) and 3D (tets, hexes) unstructured curvi-
linear meshes.

On a semi-discrete level, the conservation laws of La-
grangian hydrodynamics can be written as

Momentum Conservation: MV
dv

dt
= −F · 1, (1)

Energy Conservation:
de

dt
= M−1

E FT · v , (2)

Equation of Motion:
dx

dt
= v, (3)

where v, e, and x are the unknown velocity, specific internal
energy, and grid position respectively. The kinematic mass
matrix MV is the density weighted inner product of contin-
uous kinematic basis functions and is therefore global, sym-
metric and sparse. We solve the linear system of (1) using a
preconditioned conjugate gradient (PCG) iterative method
at each time step. The thermodynamic mass matrix ME is
the density weighted inner product of discontinuous ther-
modynamic basis functions and is therefore symmetric and
block diagonal, with each block consisting of a local dense
matrix. We solve the linear system of (2) by pre-computing
the inverse of each local dense matrix at the beginning of

a simulation and applying it at each time step using dense
linear algebra routines. The rectangular matrix F, called
the generalized force matrix, depends on the hydrodynamic
state (v, e,x) and needs to be evaluated at every time step.

The most computationally intensive part of the above al-
gorithm is the evaluation of the matrix F, which can be
assembled from the generalized corner force matrices {Fz}
computed in every zone (or element) of the computational
mesh. Evaluating Fz is a locally FLOP-intensive process
based on transforming each zone back to the reference el-
ement where we apply a quadrature rule with points {q̂k}
and weights {αk}:

(Fz)ij =

∫
Ωz(t)

(σ : ∇~wi)φj

≈
∑
k

αkσ̂(~̂qk) : J−1
z (~̂qk)∇̂ ~̂wi(~̂qk) φ̂j(~̂qk)|Jz(~̂qk)|. (4)

The generalized force matrix F is constructed by two loops:
an outer loop over zones (for each z) in the domain and an
inner loop over the quadrature points (for each k) in each
zone. Each zone and quadrature point computes a compo-
nent of the corner forces associated with it independently.

A local corner force matrix Fz can be written as

Fz = AzB
T,

with

(Az)ik = αkσ̂(~̂qk) : J−1
z (~̂qk)∇̂ ~̂wi(~̂qk) |Jz(~̂qk)| (5)

and

(B)jk = φ̂j(~̂qk) . (6)

The matrix B contains the values of the thermodynamic ba-
sis functions sampled at quadrature points on the reference

element φ̂j(~̂qk) and is of dimension number of thermody-
namic basis functions by number of quadrature points. The
values stored in the matrix B are constant in time. The
matrix Az contains the values of the gradient of the kine-
matic basis functions sampled at quadrature points on the

reference element ∇̂ ~̂wi(~̂qk) and is of dimension number of
kinematic basis functions by number of quadrature points.
This matrix also contains terms which depend on the ge-
ometry of the current zone, z, as well as the stress values

σ̂(~̂qk) which require evaluation at each time step and involve
significant amounts of computation including singular value
decomposition (SVD), eigenvalue, eigenvector, equation of
state (EOS) evaluations, etc. at each quadrature point (see
[1] for more details).

A high order finite element solution is specified by choos-
ing the order of the kinematic and thermodynamic bases.
In practice, we choose the order of the thermodynamic basis
to be one less than the kinematic basis, where a particular
method is designated as Qk-Qk−1, k ≥ 1, corresponding to
a continuous kinematic basis in the space Qk and a discon-
tinuous thermodynamic basis in the space Qk−1. High order
methods (as illustrated in Figure 1) can lead to better nu-
merical approximations at the cost of more basis functions
and quadrature points in the evaluation of (2). By increas-
ing the order of the finite element method, k, used in a given
simulation, we can arbitrarily increase the floating point in-
tensity of the corner force kernel of (2) as well as the overall
algorithm of (1) - (3).

Figure 1: Schematic depiction of bilinear (Q1-Q0),
biquadratic (Q2-Q1), and bicubic (Q3-Q2) zones.

Here we summarize the basic steps of the overall BLAST
MPI-based parallel algorithm:

1. Read mesh, material properties and input parameters;

2. Partition domain across MPI tasks and refine mesh in
parallel if necessary;

3. Compute initial time step;

4. Loop over zones in the subdomain of each MPI task:

(a) Loop over quadrature points in each zone;

(b) Compute corner force associated with each quadra-
ture point and update time step;

5. Assemble zone contribution to global linear system;

6. Solve global linear system for new accelerations;

7. Integrate accelerations in time to get velocities and
new mesh positions;

8. Update internal energies due to hydrodynamic motion;

9. Go to 4 if final time is not yet reached, otherwise exit.

Step 4 is associated with the corner force calculation of
(2). It takes at least 55% of the total time and is therefore
a computational hot spot where we focus our effort. Step
6 requires solving the linear equation (using a simple PCG
solver) of (1) which takes about 25% of total run time. In
Table 1 we show timing data for each of these kernels for
various high order methods in 2D and 3D. In general, the
computational work of each of these kernels increases as the
order of the method k is increased and also substantially
increases for 3D computations.

Method Corner Force CG Solver Total time
2D: Q4-Q3 198.6 53.6 262.7
2D: Q3-Q2 72.6 26.2 103.7
3D: Q2-Q1 90.0 56.7 164.0

Table 1: Profile of BLAST: The corner force kernel
consumes 55%-75% of total time. The CG solver
takes 20%-34%. Measurements are based on three
hundred time step iterations. Time is in seconds.

3. HYBRID PROGRAMMING MODEL
Multi-GPU communication relies on CPU-GPU commu-

nication on a single node and CPU-CPU communication
across nodes. Therefore, a multi-GPU implementation re-
quires CUDA to interact with other CPU programming mod-
els like MPI, OpenMP or Pthreads. Our implementation is
composed of the following two layers of parallelism:

• MPI-based parallel domain-partitioning and commu-
nication between CPUs

• CUDA and OpenMP based parallel corner force calcu-
lation inside each MPI task

To facilitate development and code maintainability, we
take a modular approach. Both CUDA and OpenMP can
be independently enabled in BLAST. In fact, the work de-
scribed in this paper represents a combination of research ef-
forts that started with a CUDA implementation, continued
with an OpenMP module, and completed with the merge of
these two approaches. In the following sections, we detail
the implementation.

3.1 CUDA Implementation
Since the corner force matrix F is large and memory trans-

fer between the host CPU and the GPU via PCI-E is rel-
atively slow, we implement the entire right hand sides of
the momentum (1) and energy (2) equations on the GPU
to avoid transferring the full matrix F, and instead transfer
only its action via input/output vectors. In the CUDA pro-
gramming guide [7], the term host is used to refer to CPU
and device to GPU. Hereafter in this paper, we follow this
practice.

3.1.1 CUDA Kernels
The CUDA implementation is composed of the following

set of kernels:

1. Kernel 1 loops over quadrature points of all zones.
This kernel computes Az from (5) based on the cur-
rent state data (v, e,x) which is transferred from the
host before the kernel is launched. Each thread works
on one quadrature point and computes a column of the
matrix Az. The number of quadrature points depends
on the order of the finite element method, k, but is
usually far below 1024, the maximum size of thread
blocks under CUDA computing capability 2.x. There-
fore, multiple zones can fit in the same thread block.
The number of zones residing on each thread block
is tunable. This kernel requires a significant amount
of floating point operations, as each thread involves
Level-3 BLAS routines like SVD, eigenvalue and eigen-
vector calculations for a 2×2 (for 2D problems) or 3×3
(for 3D problems) matrix. Because there is no way
for each thread to call standard linear algebra library
routines like MAGMA [8] inside of CUDA kernels, we
hand code these routines.

2. Kernel 2 loops over zones. One thread block works
on one zone. Each zone (thread block) does a matrix-
matrix transpose multiplication Fz = AzB

T (DGEMM).
Therefore, this kernel can be expressed as a batched
DGEMM, with the number of batches be number of
zones. Because the matrix B is constant in time as
described in Section 2, it can be stored in read only
memory. Consistent with CUBLAS [9] and MAGMA,
the matrices are stored in column-major order. To
maximize memory coalescing, each thread in a thread
block computes one row of the matrix F as shown in
Figure 2.

3. Kernel 3 computes F · 1 from (1) and either returns
the result to the CPU or remains on the GPU depend-
ing on whether or not our custom CUDA-PCG solver is

Figure 2: Each thread block performs the operation
Fz = AzB

T. Matrices are stored in column-major
order. Threads read and write row-wise to ensure
memory coalescing. Reading Az and B can be ac-
celerated via shared memory and constant memory
respectively.

enabled. In this kernel, each thread block does a small
matrix-vector multiplication (DGEMV) and computes
part of a big vector. All thread blocks assemble the
result vector. This kernel can be expressed as batched
DGEMV.

4. Kernel 4 is not a single kernel function in CUDA. It
is a custom conjugate gradient solver for (1) with a
diagonal preconditioner (PCG) [12]. It is constructed
with CUBLAS/CUSPARSE routines [10]. When en-
abled, this custom CUDA solver performs step 6 from
Section 2 and is outside of the corner force calculation.
Currently, it only runs on a single GPU (see discussion

in Section 3.4. The result vector
dv

dt
is transferred back

to the CPU and used in next time step if time is not
out.

5. Kernel 5 computes FT · v from (2). Every thread
block does a matrix transpose vector multiplication
(DGEMV) similar to kernel 3. Again, this kernel can
be expressed as batched DGEMV.

6. Kernel 6 is a sparse (CSR) matrix multiplication to
compute M−1

E (FT ·v) by calling a CUSPARSE SpMV
routine [10]. The reason for calling SpMV routine in-
stead of using a PCG solver as in kernel 4 is that the
matrix ME is block diagonal as described in Section 2.
The inverse of ME is only computed once at the ini-

tialization stage. The result vector
de

dt
is transferred

back to the CPU and used in next time step.

3.1.2 CUDA Memory Transfer Overhead
Input vectors are transferred from the host to the device

before kernel 1, and output vectors are transferred back from
the device to the host after kernels 3,4 and 6. Because the
data size is relatively small (i.e. vectors instead of matri-
ces) and the floating point intensity of the kernels is quite
large, the memory transfer overhead is minor compared to
the kernel running time. The CUDA profiler confirms it as
shown in Figure 3.

3.1.3 CUDA Code Optimization
We use the CUDA profiler to identify performance bottle-

necks of our CUDA kernels. Various techniques were used
to optimize kernel 1. We use auto tuning to find the op-
timal number of zones for each thread block in kernel 1 as

shown in Table 5. Details of auto tuning will be discussed
in Section 3.3.

Step by step optimization of kernel 2. At the beginning,
we expected kernel 2 to be faster than kernel 1 which has
more FLOPs than kernel 1. However, the CUDA profiler
showed that our first version kernel 2.1 dominated GPU run
time. The reason is we did not make good use of bandwidth
of GPU. In kernel 2.1, the matrices Az and B were loaded di-
rectly from global memory. In kernel 2.2, we take advantage
of the memory hierarchy. Shared memory is used to acceler-
ate reading of Az and constant memory is used to accelerate
reading of B, because Az is local per thread block and B
is globally shared by all thread blocks. Compared to kernel
2.1, kernel 2.2 is a substantial improvement, but still not sat-
isfactory. An alternative implementation is to call cublas-
Dgemmbatched [9] as shown in Figure 4. However, cublas-
Dgemmbatched is general purpose since it assumes each Az

multiplies a different B. Our custom DGEMM version of
kernel 2 is application specific and we believe there is still
space to improve based on CUBLAS. As a further optimiza-
tion, kernel 2.3 uses blocking techniques. Blocking is the
process of dividing a large matrix into smaller matrices to
solve. Blocking is widely adopted in LAPACK. The main
purpose of blocking is to increase data locality and thus im-
prove cache performance. On GPUs, blocking can deliver
a second benefit: reducing the amount of shared memory
requirement for each thread block and allow more thread
blocks to reside on streaming multiprocessors and thus en-
hance the parallelism. Blocking can be done in different
patterns. We found that accessing columns in blocks by
1D dimension proved to be most effective. However, the
number of rows of Az is not always multiple of a warp size
(32). Loading one column from global memory to shared
memory(as shown in Figure 2) may be not coalesced, since
consecutive warp may not start from aligned address. To
avoid this potential penalty, we pad column vectors of Az

with zeros when the row size is not divisible by 32 in kernel
2.4. Surprisingly, this benefit turns out to be very small as
shown in Figure 4. The reason is starting from computing
capability 2.x devices, the alignment requirement is not as
restricted as before [7]. Considering padding will incur some
storage overhead, thought it is small, we favor kernel 2.3 in
our code. Finally, we are able to achieve 70-80 Gflops on one
M2050, about 1.3-2 times faster than CUBLAS routines.

Optimization of kernel 1. Unlike kernel 2, it is hard to
explore shared memory in kernel 1, because threads seldom
share data. Instead, each thread works on an individual
workspace allocated in global memory. This can be done by
allocating a big array and splitting a chunk to each thread.
The workspace is allocated just once and can be rewritten
each time kernel 1 is called. SVD, eigenvalue and eigenvector
calculations are all performed in the workspace.

Because neighboring threads (in one warp) not only exe-
cute together but also access data consecutively in workspace,
good data locality is achieved both in time and space. Under
this circumstance, we favor larger L1 cache to cache data,
that is 48KB L1 cache vs 16KB shared memory, in kernel 1.
While kernel 2 needs substantial shared memory, we config-
ure to favor larger shared memory, that is 48KB of shared
memory vs. 16KB of L1 cache.

Table 2 shows the performance of kernel 1 under two con-
figurations. From the table, we can see that a configuration
of 48KB L1 cache is clearly better than the other, especially

Figure 3: CUDA Profiler shows a high ratio of kernel time to memory transfer in the GPU implementation. In
the figure, loop quadrature point corresponds to kernel 1. Loop zone corresponds to kernel 2. loop zone dv dt
and de dt corresponds to kernel 3 and 5, respectively. csrMv kernel-1 is kernel 6. Other routines are parts
of kernel 4 (PCG solver). Notice csrMv kernel-0 is in PCG solver. Numbers in bracket are times the routine
is called during the profiling period.

Figure 4: Custom kernel 2.x and cublasDgemmbatched implementation of batched AzB
T on M2050. Only global

memory is used in kernel 2.1. Kernel 2.2 load the entire matrix Az into shared memory and uses constant
memory to read B. Blocking technique is used in kernel 2.3. Padding is added in kernel 2.4. Two test cases
are performed. The left blue one is a 3D Q2-Q1 case with Az 81*64 and B 8*64, and the right red one is 2D
Q4-Q3 with Az 50*64 and B 16*64. Number of batches is 4096 and 5376 respectively.

for higher order methods with more quadrature points.

Method Config 1 Config 2
Q2-Q1 0.32 0.34
Q3-Q2 0.90 1.05
Q4-Q3 2.14 3.13

Table 2: Performance of kernel 1 under two config-
urations. Config 1 is with 48KB L1 cache and less
shared memory and Config 2 is with 16KB L1 cache
but more shared memory. Time is in milliseconds

There is a global reduction related to kernel 1 to find the
minimum time step (Step 4.b from Section 2) because of the

CFL time step condition. However, a reduction operation
on the GPU is expensive and requires more than one ker-
nel (without using atomic operation), because every thread
needs to cooperate to reduce to one block and then every
block cooperates to reduce again. We therefore implement
this reduction on the CPU.

Kernel 3 and 5 can be translated into batched DGEMV.
Unfortunately, CUBLAS does not provide batched DGEMV
until the latest version 5.0. An alternative is to call a stan-
dard DGEMV routine number of zones times. Yet, the per-
formance is very bad, as the number of zones is huge and the
overhead of function calls overwhelmed any potential bene-
fits. Finally, we program from scratch instead of calling any
library. In our custom kernel, each thread block (zone) does

Problem Serial 1 OMP Thread Overhead
3D: Sedov 51.5 51.9 0.7%
2D: Triple-pt 17.7 17.9 1.1%

Table 3: Overhead of memory allocation and de-
allocation in an OpenMP thread. Measurements are
based on three hundred iterations. Time is in sec-
onds

a DGEMV operation. As shown in CUDA profiler, the two
kernels are very small compared to kernel 1 and 2. This is
not surprising, since DGEMV is a BLAS Level 2 routine.

Yet, to build our PCG solvers of kernel 4, we still call
routines in CUBLAS and CUSPARSE as shown in Figure
3. We assume libraries to be stable. Kernel 6 is a sparse
(CSR) matrix multiplication routine in CUSPARSE. This
SpMV routine is also needed in kernle 4. From Figure 3 We
can see the performance of SpMV is critical to the PCG,
since it is the biggest one of PCG.

3.2 CUDA + OpenMP Implementation
Because a GPU runs asynchronously with the CPU, con-

trol can return to a host thread prior to the GPU complet-
ing work. It is equally important to make sure that the
CPU cores are not idle while the GPU is working, especially
considering that the number of cores is far more than the
number of GPU cards in a typical heterogeneous cluster. In
terms of the corner force calculation, since each zone com-
putes independently, we split the work load by zones. A
portion of the zones on a given domain are distributed to
CPU cores instead of the entire set of zones going to the
GPU.

After the launch of CUDA kernels, the host thread will
spawn OpenMP threads and distribute the remaining zones
among the threads. Each thread allocates private working
space and executes like normal serial code. There is no syn-
chronization between threads unless they exit the parallel
region. Upon exit, the memory associated with each thread
will be freed. Because the corner force routine is called re-
peatedly, there is additional overhead of memory allocation
and de-allocation introduced by OpenMP compared to the
serial code. Table 3 shows this overhead is small by com-
paring 1 OpenMP thread to the serial code.

A synchronization between the CPU and the GPU is re-
quired to complete the corner force calculation because there
is data dependency in the following code. A key question
is how to find an optimal ratio of work load between CPU
and GPU, so none of them becomes idle while waiting for
the other. We propose auto tuning to find this ratio.

3.3 Auto tuning
Like other CFD applications, BLAST makes use of explicit

time evolving iterations. Our auto tuning technique is able
to find the optimal load balancing parameters in the code
by taking advantage of the time stepping in BLAST.

We take the auto balance of CPU and GPU as an example
to describe the idea of auto tuning. First, the work load
(zones) is distributed among CPU and GPU in an arbitrary
ratio, usually half to half. In each iteration, GPU kernels
and CPU threads are timed separately. After each sampling
period, if the execution time ratio is outside the interval we
set, say [0.9 − 1.1], a scheduler simply reassigns zones (say
10% of the zones, we call this the 10% offset) to the one that

finished faster.
After a few sampling periods, the scheduler will finally

converge to an optimal ratio. Our tests shows that the con-
vergence only takes a few time periods as shown in Table
4. Sometimes, the ratio fluctuates and does not converge.
In that case, reducing the offset or relaxing the interval will
help to speedup the convergence rate.

Problem Optimal ratio Convergence period
3D: Sedov 0.45 3
2D: Sedov 0.75 14

2D: Triple-pt 0.77 12

Table 4: The optimal ratio refers to the percentage
of all zones assigned on the GPU. The starting ten-
tative ratio is 0.5, and the target execution time ratio
interval is [0.9 − 1.1]. One sampling period consists
of forty iterations.

Considering load balance is vulnerable to almost every
outside factor including the number of CPU cores to GPUs,
the order of numerical method, domain size and dimension
of testing case, auto balance is a convenient and robust prac-
tical tool. In particular, when the code is ported to to an-
other platform, the changes will be detected and load will
be rebalanced automatically. Furthermore, auto tuning is
independent of the MPI load balance layer, since it is called
inside each MPI task. Finally, our rebalancing technique is
built upon small number of timing functions, so its overhead
is minor.

In kernel 1, we use the same idea to tune the number of
zones per thread block, as shown in Table 5 . In fact, this
methodology can be extended to other adjustable parame-
ters.

3.4 MPI Level Parallelism
The MPI level parallelism in BLAST is based on MFEM

which is a modular C++ finite element library [11]. At
the initialization stage (Step 2 in Section 2), MFEM takes
care of the domain splitting and parallel mesh refinement as
shown in Figure 5. Each MPI task is assigned a subdomain
consisting of a number of elements (zones). Finite element
degrees of freedom (DOFs) shared by multiple MPI tasks
are grouped by the set (group) of tasks sharing them and
each group is assigned to one of the tasks in the group (the
master), see Figure 6. This results in a non-overlapping de-
composition of the global vectors and matrices and typical
FEM and linear algebra operations such as matrix assem-
bly and matrix-vector product require communications only
within the task groups.

After computing the corner forces, a few other MPI calls
are needed to handle the translation between local finite
element forms and global matrix / vector forms in MFEM
(Step 5 in Section 2). An MPI reduction is used to find the
global minimum time step.

Zones per Block Block Size Time
2 32 0.48
4 64 0.52
6 96 0.50

Table 5: Tuning the number of zones per thread
block in kernel 1. Kernel time is in milliseconds.

Because computing the corner forces can be done locally,
the MPI level and the CUDA/OpenMP parallel corner force
level are independent. Each module can be enabled or dis-
abled independently. However, the kinematic mass matrix
MV in (1) is global and needs communication across pro-
cessors, because the kinematic basis is continuous and com-
ponents from different zones overlap. The modification of
MFEM’s PCG implementation needed to enable the CUDA-
PCG solver to work on multi-GPUs, is beyond the scope of
the present work. Therefore, we only consider the CUDA-
PCG solver for (1) on a single GPU.

Figure 5: Parallel mesh splitting and parallel mesh
refinement

Figure 6: Zones assigned to one MPI task and as-
sociated Q2 DOFs (left); the DOFs at the boundary
of this subdomain are shared with neighboring tasks
(middle); groups of DOFs, including the local group
of internal DOFs (right).

4. TESTING CLUSTER
We target our hybrid implementation for the Edge clus-

ter installed at LLNL which has 2 Intel 6 Core Xeon CPUs
and 2 NVIDIA M2050 GPUs per node, with further de-
tails provided in Table 6. This is a typical GPU cluster
architecture, since most GPU clusters are equipped with
dozens of CPU cores but only a few high-end GPUs. An-
other GPU-accelerated cluster, open to the science commu-
nity, is the NSF Keeneland system installed at ORNL [13].
The Keeneland Full Scale (KFS) system is a 264-node clus-
ter based on HP SL250 servers. Each node has 32 GB of
host memory, two Intel Sandy Bridge CPU’s, three NVIDIA
M2090 GPUs, and a Mellanox FDR InfiniBand interconnect.

CPU GPU Mem/Node Switch Nodes
6CoreX5660 M2050 96GB IB QDR 216

Table 6: Overview of the LLNL Edge cluster.

Although a Fermi GPU can be shared by multiple MPI
processes (in shared modes), multiple MPI tasks will cause
false serialization across these tasks, because CUDA only
allows one context to be active at one time [16]. It is similar

Problem Method MFEM PCG CUDA PCG
2D: Triple-pt Q3-Q2 90.18 20.8

3D: Sedov Q2-Q1 27.81 10.55

Table 8: Time of CUDA-PCG compared to MFEM-
PCG based 1000 iterations. Time is in seconds. The
overhead of memory transfer between host and de-
vice is included in CUDA-PCG.

to the restriction of one process running on one CPU core at
one time. Normally this false sharing is not what users wish,
since users want dedication instead of sharing. In most cases,
the intent is to allow one process/thread to take control of
only one GPU. In fact, most cluster administrators set GPUs
on exclusive process mode to prevent sharing. This mode is
set on the Edge cluster at LLNL.

In our setting, one GPU is dedicated to one MPI task.
OpenMP is adopted to harness 6 CPU cores and the main
OpenMP thread is used to schedule loads between the CPU
and GPU, while a top MPI layer is used for inter-CPUs/GPUs
communications, as shown in Figure 7.

Figure 7: MPI + CUDA + OpenMP hierarchy.

5. TESTING RESULTS AND DISCUSSION
For our test cases we consider the 2D triple point problem

using a Q3-Q2 method and the 3D Sedov blast wave prob-
lem using a Q2-Q1 method (see [1] for further details on the
nature of these benchmarks). In all cases we use double pre-
cision. The Intel compiler and NVCC compiler under CUDA
v4.2 are used for the CPU and GPU codes respectively.

5.1 Validation of CUDA code
We get consistent results on the CPU and the GPU. Both

the CPU and the GPU code preserved the total energy of
each calculation to machine precision, as shown in Table 7.

The density distributions of the 2D triple point problem
in the CPU and CPU + GPU codes are shown in Figure 9
and Figure 10 respectively.

5.2 CUDA-only Acceleration of PCG
In Table 8 we compare our custom CUDA-PCG solver

to our standard MFEM-PCG solver. Note that the CUDA-
PCG solver outperforms the CPU based MFEM-PCG solver
and achieved a maximum 4.3x speedup.

5.3 MPI + OpenMP + CUDA Acceleration of
Corner Force

Platform Final Time Kinetic Internal Total Total Change
CPU 0.6 5.0423596813598e-01 9.5457640318651e+00 1.005000000001e+01 -9.2192919964873e-13
GPU 0.6 5.0418618040297e-01 9.5458138195986e+00 1.005000000002e+01 -4.9382720135327e-13

Table 7: Results of CPU and GPU for 2D triple-pt problem using a Q3-Q2 method; the total energy includes
kinetic energy and internal energy. Both CPU and GPU results preserve the total energy to machine
precision.

Table 9 shows the performance of the corner force routine
parallelized by different methods. From the table, we can
see that one GPU can outperform the 6 core CPU in certain
cases. Auto balancing distributes the ratio of CPU to GPU
workload roughly according to the inverse of their running
time. Speedups compared to the serial code are also shown
in Figure 8. Here we see that 2 GPU & 12 Cores achieved
a 24x and 2.5x speedup compared to 1 core and 12 cores,
respectively for the triple-pt problem. In these tests, the
sub-optimal kernel 2.2 was used. As discussed earlier, if the
more advanced kernel 2.3 is used, the speedup will be even
greater.

Table 10 shows that we get a perfect weak scaling of
the triple-pt problem using a Q4-Q3 method with up to 64
GPUs.

Figure 8: Speedup of corner force compared to serial
code

6. LIMITATIONS
Currently, our custom PCG solver only works on a single

GPU. Because the PCG Solver takes more than 20% percent
and is not parallelized on multi-GPU, the overall speedup
will be limited by Amdahl’s law.

Unfortunately, there are a few CUDA math libraries that
BLAST can directly use at present. In particular, BLAST
can use a third party MFEM CPU code, but no CUDA-
based counterparts. Until now, only a small number of
CUDA math libraries are available. For example, CUS-
PARSE and CUSP deal with sparse matrix [14], and CUBLAS,
MAGMA, and CULA deal with dense linear algebra [8] [15].
MAGMA is able to support multi-GPU in a single node
right now, but CUSP, CUSPARSE, and CUBLAS only sup-
port single GPU. Although there is still some lack of CUDA
software in the area of hydrodynamics computations, and
others as well, the wide acceptance of GPUs for scientific
computing is influencing developers to quickly close those
gaps.

7. CONCLUSIONS AND FUTURE WORK

Figure 9: Domain decomposition using 2 MPI tasks,
each with 1 M2050 and 6 Xeon Cores.

Figure 10: Domain decomposition using 12 MPI
CPU tasks.

The BLAST code uses high order finite element methods
to solve compressible hydrodynamics problems on a mov-
ing Lagrangian mesh and requires the computation and as-
sembling of corner force matrices and the solution of both
sparse and dense linear algebra problems. In this paper, we
presented a hybrid programming model and a port of the
BLAST code on a GPU/CPU cluster. OpenMP/CUDA was
used to accelerate the corner force computation and MPI is
used for communication. We use existing CUDA linear alge-
bra library routines to construct our solvers and implement
custom routines to optimize our code where the libraries
are unable to achieve optimal performance. An auto tun-
ing technique was introduced to maintain load balancing
between multi-core CPU and GPU, and to tune CUDA ker-
nels. The CPU/GPU results demonstrate consistency with
the CPU only results and achieved a good speedup. Al-
though GPU computing is still an area of research and key
libraries are still lacking, our results demonstrate the poten-
tial of hybrid GPU computing.

In the future, we plan to move our code on Kepler plat-
form not just because Kepler is a new GPU, but due to a key
feature called hyper-Q introduced on Kepler [16]. Hyper-Q
allows multiple CPU cores to launch work on a single GPU
simultaneously, even each CPU core from different MPI pro-
cesses. With this feature, the OpenMP implementation in
our code can be removed without concerning about the idle

Problem Method Serial 6 Threads 1 GPU
1 GPU +
6 threads

2 MPI x
(1 GPU +
6 threads)

12 MPI GPU workload

2D: Triple-pt Q3-Q2 68 13.1 6.15 5.3 2.8 6.9 0.77
3D: Sedov Q2-Q1 407 77 89 45.8 23.6 36.8 0.45

Table 9: Performance of corner force routine with different parallel methods: Serial, GPU, OpenMP, MPI,
GPU & OpenMP and GPU & OpenMP & MPI. Time is in seconds.

Number of GPUs 1 4 16 64
Mesh Size 160*160 320*320 640*640 1280*1280

Corner Force Time 11.6 11.73 11.34 11.71

Table 10: Perfect weak scaling of the 2D triple-pt problem using a Q4-Q3 method on multiple GPUs. Each
GPU works on a fixed number of zones. Time is in seconds based on one hundred iterations.

of CPU cores.

8. REFERENCES
[1] V.A.Dobrev, Tz.V.Kolev, R.N.Rieben. High order

curvilinear finite element methods for Lagrangian
hydrodynamics, SIAM J. Sci. Comp., 34(5), 2012,
606-641.

[2] D.A.Jacobsen, J.C.Thibault, I.Senocak. An
MPI-CUDA Implementation for Massively Parallel
Incompressible Flow Computations on Multi-GPU
Clusters, 48th AIAA Aerospace Sciences Meeting and
Exhibit, 2010.

[3] J.C.Thibault, I.Senocak. Accelerating Incompressible
Flow Computations with a Pthreads-CUDA
Implementation on Small-Footprint Multi-GPU
Platforms, The Journal of Supercomputing, 59(2),
693-719.

[4] N.Maruyama, T.Nomura, K.Sato, S.Matsuoka. An
Implicitly Parallel Programming Model for Stencil
Computations on Large-Scale GPU-Accelerated
Supercomputers, SC11, 2011.

[5] J.Holewinski, L.Pouchet, P.Sandayappan.
High-performance code generation for stencil
computations on GPU architectures, ICS’12,
Proceedings of the 26th ACM international conference
on Supercomputing.

[6] L.Wang, W.Jia, X.Chi, Y.Wu, W.Gao, L.Wang. Large
Scale Plane Wave Pseudopotential Density Functional
Theory Calculations on GPU Clusters, SC11, 2011.

[7] NVIDIA CUDA C Programming Guide v4.2,
http://developer.nvidia.com/cuda/nvidia-gpu-
computing-documentation.

[8] MAGMA: http://icl.cs.utk.edu/magma/

[9] CUBLAS User Guide,
http://developer.nvidia.com/cuda/nvidia-gpu-
computing-documentation.

[10] CUSPARSE User Guide,
http://developer.nvidia.com/cuda/nvidia-gpu-
computing-documentation.

[11] MFEM: http://mfem.googlecode.com/

[12] M.Naumov, Incomplete-LU and Cholesky
Preconditioned Iterative Methods Using CUSPARSE
and CUBLAS, June 21, 2011.

[13] Keeneland: http://keeneland.gatech.edu/

[14] N.Bell, M.Garland. Cusp: Generic Parallel Algorithms

for Sparse Matrix and Graph Computations,
http://cusp-library.googlecode.com, 2012, version
0.3.0.

[15] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L.
Paolini, E. J. Kelmelis. CULA: Hybrid GPU
Accelerated Linear Algebra Routines, SPIE Defense
and Security Symposium (DSS), April, 2010.

[16] Whitepaper: NVIDIA Next Generation CUDA
Compute Architecture: Kepler GK110.
http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf

	1 Introduction
	2 The BLAST Algorithm
	3 Hybrid Programming Model
	3.1 CUDA Implementation
	3.1.1 CUDA Kernels
	3.1.2 CUDA Memory Transfer Overhead
	3.1.3 CUDA Code Optimization

	3.2 CUDA + OpenMP Implementation
	3.3 Auto tuning
	3.4 MPI Level Parallelism

	4 Testing Cluster
	5 Testing Results and discussion
	5.1 Validation of CUDA code
	5.2 CUDA-only Acceleration of PCG
	5.3 MPI + OpenMP + CUDA Acceleration of Corner Force

	6 Limitations
	7 Conclusions and Future Work
	8 References

