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Abstract. Today’s high computational demands from engineering fields
and complex hardware development make it necessary to develop and
optimize new algorithms toward achieving high performance and good
scalability on the next generation of computers. The enormous gap be-
tween the high-performance capabilities of GPUs and the slow inter-
connect between them has made the development of numerical software
that is scalable across multiple GPUs extremely challenging. We describe
and analyze a successful methodology to address the challenges—starting
from our algorithm design, kernel optimization and tuning, to our pro-
gramming model—in the development of a scalable high-performance
generalized eigenvalue solver in the context of electronic structure calcu-
lations in materials science applications. We developed a set of leading
edge dense linear algebra algorithms, as part of a generalized eigensolver,
featuring fine grained memory aware kernels, a task based approach and
hybrid execution/scheduling. The goal of the new design is to increase
the computational intensity of the major compute kernels and to reduce
synchronization and data transfers between GPUs. We report the per-
formance impact on the generalized eigensolver when different fractions
of eigenvectors are needed. The algorithm described provides an enor-
mous performance boost compared to current GPU-based solutions, and
performance comparable to state-of-the-art distributed solutions, using
a single node with multiple GPUs.

1 Introduction

In the context of electronic structure problems in material science and chem-
istry, the solution of the generalized Hermitian-definite eigenvalue problem is
the most expensive task, dominating the entire computation [4, 20, 26]. In par-
allel electronic structure codes, many independent eigenvalue problems must be
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solved, allowing each problem to be solved independently on a different node.
In this work we are thus interested in dense eigensolvers, and in particular, for
generalized Hermitian-definite problems of the form

Ax = λBx, (1)

where A is a dense Hermitian matrix and B is Hermitian positive definite. Solv-
ing (1) requires the development of a number of routines. First, the matrix B
is decomposed using a Cholesky factorization into B = LLH , where H denotes
conjugate-transpose. The resulting L factors are used to transform (1) to a stan-
dard Hermitian eigenproblem Ãz = λz, where Ã = L−1AL−H . After solving the
standard Hermitian eigenproblem, the eigenvectorsX of the generalized problem
(1) are then computed by backsolving with the Cholesky factor, X = L−HZ. To
solve the standard Hermitian (symmetric) eigenproblem of the form Ãz = λz,
finding its eigenvalues Λ and eigenvectors Z such that Ã = ZΛZH, the standard
strategy follows three steps [1, 12, 24]. First, reduce the matrix to a tridiagonal
matrix T using an orthogonal transformation Q such that Ã = QTQH (called
the “reduction phase”). Note that when a two-sided orthogonal transformation
is applied to generate T , the eigenvalues of the tridiagonal matrix are the same
as those of the original matrix. Second, compute eigenpairs (Λ,E) of the tridiag-
onal matrix (called the “solution phase”). Third, back transform eigenvectors of
the tridiagonal matrix to eigenvectors of the original matrix, Z = QE (called the
“back transformation phase”). All of these steps are computationally expensive,
so we will develop an efficient multi-GPU implementation of each step.

2 Related Work

Solving the generalized eigenvalue problem is an active research field. Recently
many researchers have been interested in this area and have developed various
strategies, with a number of software implementations. The robust and conven-
tional software LAPACK [3] and ScaLAPACK [7] are for shared-memory and
distributed-memory systems, respectively. Recent work on symmetric eigenvalue
problems has concentrated on accelerating separate components of the solvers,
and in particular, the reduction to tridiagonal form, which is the most time con-
suming phase, and also the eigensolver. A new type of algorithm that challenges
the standard one-stage reduction algorithms has been introduced. The idea be-
hind this new technique is to split the reduction phase into two or more stages,
recasting expensive memory-bound operations that occur during the panel fac-
torization into compute-bound operations. One of the first uses of a two-stage
reduction occurred in the context of out-of-core solvers for generalized symmet-
ric eigenvalue problems [13]. Then, a multi-stage method was used to reduce
a matrix to tridiagonal, bidiagonal and Hessenberg forms [21]. Consequently,
a framework called Successive Band Reduction (SBR) was developed [5, 6]. A
multi-stage approach has also been applied to the Hessenberg reduction [18,19].
Tile algorithms have also recently seen a rekindled interest when applied to the
two-stage tridiagonal [15, 23] and bidiagonal reductions [22]. Their first stage is
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implemented using high performance kernels and asynchronous execution while
the second stage is implemented based on cache-aware kernels and a task coa-
lescing technique [15]. Recently, a distributed-memory eigensolver library called
ELPA [4] was developed for electronic structure codes. ELPA is similar to ScaLA-
PACK and does not support GPUs. It includes one-stage and two-stage tridiago-
nalizations, the corresponding eigenvector transformation, and a modified divide
and conquer routine that can compute the entire eigenspace or a portion of it.
These approaches, in contrast to our own, are not for hybrid GPU-CPU systems.

With the emergence of high-bandwidth, high-performance GPUs, memory-
bound and compute-bound operations can be accelerated by an order of
magnitude or more. Tomov et al. [29, 30] presented a hybrid CPU-GPU im-
plementation for the one stage reduction algorithms, which take advantage of
the high-bandwidth of the GPU by offloading the expensive Level 2 BLAS op-
erations to the GPU. Dong et al. [9] extended this to multi-GPUs. Haidar et
al. [16] developed a two-stage approach for multicore and a single GPU. The
main thrust of the work presented here is the extension of this two-stage ap-
proach to multi-GPUs.

3 Main Contributions

Besides the software development efforts that we investigate to accomplish an
efficient implementation, we highlight three main contributions related to the
algorithm’s design:

– Fine grained memory aware and computationally intense tasks.
Our approach to efficient hardware use and parallelism relies on splitting
the computation into tasks that either increase computational intensity or
reduce data movement. Two main issues should be taken into consideration
here. First, the task splitting and determination of granularity is essential for
obtaining high performance. Second, the data distribution among the CPUs
and GPUs should also be taken into consideration to minimize communica-
tion and achieve good performance.

– Hybrid multi CPU-GPU execution. Along with the computation split-
ting, a hybrid multi CPU-GPU implementation combined with task schedul-
ing is an indispensable ingredient for obtaining high performance algorithms.
We map computational tasks to the strengths of heterogeneous hardware
components and overlap computation on GPUs with computation on CPUs.

– A hierarchical multi-GPU communication model, which optimizes
communication for multi-GPUs and can be applied in general, beyond the
scope of the algorithms developed.

4 Hybrid Multi GPU-CPU Algorithm

In this section we describe our multi CPU-GPU algorithm, presenting a detailed
study to explain how we achieve good performance while dealing with a hetero-
geneous system. To make our description fruitfully interesting and clear we will
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also describe implementation issues and give performance results of each kernel’s
multi-GPU implementation. Before developing our kernels, we should pay atten-
tion to the communication schema that our algorithm will use, as communication
is an important component that affects any multi-GPU implementation.

4.1 Hierarchical Communication Model

As GPUs are well known for their high-performance capabilities and the rela-
tively slow interconnect between them, reducing communication or overlapping
communication with computation is critical in order to maximize the time GPUs
spend in compute-intensive kernels, and minimize the time spent only in com-
munication. To address the increase in communication when a large number
of GPUs are used together, we developed a hierarchical communication model.
Each PCIe switch connecting GPUs is viewed as a node in a distributed sys-
tem, with one GPU in each node assigned to be the master. Within each node,
GPUs communicate locally in a “free GPU-GPU mode” between the master
GPU and other GPUs; between two nodes, the master GPUs communicate to-
gether directly. This hierarchical communication model is easily adaptable to a
distributed environment, where communication between master GPUs of differ-
ent nodes should be done via the CPU using MPI.

4.2 Transformation from Generalized to Standard Eigenvalue

As described above, the transformation from a generalized to a standard
eigenvalue problem consists, first, in performing the multi-GPU Cholesky fac-
torization of B. We refer the reader to [31] for a detailed description of our
multi-GPU Cholesky implementation. Then, the resulting factor L is used to
compute Ã = L−1AL−H . This operation is equivalent to the xHEGST function
of the LAPACK library. We split this operation into three phases: (1) partially
compute a panel Ai (blue portion of Figure 1a), then (2) use it to update the
trailing matrix Ai+1:n (red and green portion) by a xHER2K, and finally (3)
continue the computation of the panel Ai (blue portion). Our multi-GPU algo-
rithm distributes the matrix A in a 1D column block cyclic distribution, thus
each GPU owns many blocks of A.

To optimize the code, phase 3 is delayed to the end of the computation, since
its final result is not needed by any of the subsequent steps i+1, i+2, . . . , while
the GPU that owns it also owns other blocks involved in the update phase 2,
so computing phase 3 at step i may delay the computation. To further reduce
the synchronization between steps, during the update phase 2, the GPU that
owns the next panel, Ai+1, will prioritize it and update it first, perform its
partial computation (phase 1), broadcast it to other GPUs, and then continue
the update of phase 2. In this way, while GPUs are updating (phase 2) at step
i, they will receive the next panel Ai+1 required to perform the next update
of step i + 1. Finally, once all updates are done, the GPUs will compute the
remaining phase 3 computation of their blocks independently, without requiring
any further communication.
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Fig. 1. (a) The multi-GPU xHEGST algorithm. (b) and (c) The ith step of the blocked
xTRSM. (d) the divide and conquer partitioning tree.

When the eigenvectors X are requested, the back transformation operation
X = L−HZ needs to be performed. This operation can be performed in a parallel
fashion where L−H is applied independently to each vector of Z. Thus, if we split
the matrix Z between the GPUs using a 1-D column block cyclic distribution,
as depicted in Figure 1c, while the stored factor L is in block rows as shown in
Figure 1b, then this operation can be performed independently by each GPU
as follows. Each block row of the matrix L is broadcast over the GPUs (e.g.,
the blue block of Figure 1b). Once received, each GPU perform two operations.
First, it computes Zi = L−H

ii Zi (red portion of Figure 1c), and then it updates
Z1:i−1 = Z1:i−1 − LH

i Zi (green portion). During these two operations the CPU
will broadcast the next Li+1 to all the GPUs, so as to overlap the copy and
the computation. The idea is to minimize the communication and overlap it as
much as possible. We represent in Figure 2a the speedup obtained over the 1-
GPU implementation by this multi-GPU implementation of this kernel when we
vary the matrix size from 2000 to 40000, and also as we increase the number
of GPUs from 2 to 8 GPUs. We see that this kernel asymptotically reaches
near-perfect scaling.

4.3 Hybrid Multi CPU-GPU Tridiagonal Reduction

Due to its computational complexity and data access patterns, the tridiagonal
reduction phase is the most challenging to develop, both algorithmically and
implementation-wise. There are two algorithmic approaches — the standard one-
stage approach from LAPACK [2], where block Householder transformations are
used to directly reduce the dense matrix to tridiagonal form, and a newer two-
stage (or more) approach, where block Householder transformations are used to
first reduce the matrix to band form, and a second, bulge chasing stage is used to
reduce the band matrix to tridiagonal [15]. The one-stage approach is well known
to be memory bound as it relies on symmetric matrix-vector multiplications (50%
of the flops).

The two-stage approach overcomes the memory-bound limitations of the one-
stage. The reduction to band is done very efficiently using Level 3 BLAS. In
particular, the dense matrix is first spread among the GPUs in a 1-D column
block-cyclic distribution. The panel that must be factored at each iteration is
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sent and factored on the CPU. The result is broadcast back to the GPUs and
used for their local updates. A look ahead techniques is used — that is, the next
panel to be factored is updated first and sent to the CPU for factorization while
the GPUs complete the rest of their updates. This allows us to overlap CPU and
GPU work. Moreover, all communication required during the update process is
performed in an efficient manner using our hierarchical model.

Figure 2b shows the performance and scalability of the multi-GPU reduction to
band. We see that this implementation of the two-stage approach provides good
scalability. For two and three GPUs the scalability is perfect, while for four GPUs
it approaches perfect scaling for a large matrix. For larger number of GPUs, it
would require larger matrices to be able to reach the asymptotic perfect behavior.
For example, if we split a matrix of size 20K over 8 GPUs, then each GPU will
hold a small portion of size 20K×2.5K, which is not enough to perform intensive
operations. The second stage that reduces the band matrix to tridiagonal is done
on the multicore host using a multi-threaded bulge chasing implementation. Fur-
ther detail can be found in Haidar et al. [14]. We observe that this multi-GPU im-
plementation of the reduction to tridiagonal provides a jump in the performance
compared to its one stagemulti-GPU counterpart, being approximately four times
faster than the one-stage approach.We will not detail more on this as the purpose
of this paper is the overall generalized eigensolver problem.
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Fig. 2. Speedup relative to one GPU for major components of generalized eigensolver

4.4 Flexible Multi-GPU Divide and Conquer Algorithm

Introduced by Cuppen [8], the divide and conquer (D&C) algorithm computes
the eigenvalues of the tridiagonal matrix T . Many serial and parallel Cuppen-
based eigensolver implementations for shared and distributed memory have been
proposed in the past [10, 11, 17, 25, 27, 28]. The overall D&C approach consists
in splitting the problem into two subproblems (son nodes) representing a rank-
one modification. Each of these subproblems is an independent problem without
any data dependencies with the other subproblems. This process is repeated
recursively, constructing a binary tree where the bottom nodes will have two
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independent sons of small size considered as two simple eigenvalue problems.
Then, on each parent node, merge the two subproblems (left and right son)
which are defined by a rank-one modification of a diagonal matrix, and proceed
to the next level in a bottom-up fashion.

To illustrate how our multi-GPU implementation is designed, let us describe
it for two subproblems. Let the matrix T of size n be split into two subproblems,
T1 of size n1 and T2 of size n2 = n−n1, as described in (2). Let the eigensolution

of those two sons be given by T1 = Ẽ1Λ̃1ẼT
1 and T2 = Ẽ2Λ̃2ẼT

2 , where (Λ̃i, Ẽi),
i = 1, 2 are the eigenvalues and eigenvectors pair of Ti. Assuming that (Ẽ0, Λ̃0)
are the eigenpairs solution of the system inside the bracket of (2), then Λ = Λ̃0

and E = ẼiẼ0 are the eigenpairs of T .

T =

(
T1 0
0 T2

)
+ ρvvT =

(
Ẽ1 0

0 Ẽ2

){(
Λ̃1 0

0 Λ̃2

)
+ ρuuT

}(
Ẽ1 0

0 Ẽ2

)T

=

(
Ẽ1 0

0 Ẽ2

)(
Ẽ0Λ̃0Ẽ0

T
)(

Ẽ1 0

0 Ẽ2

)T

= EΛET

(2)

To find the eigensolution of each rank-one modified system M requires solving
its secular equation. This is a memory bound process that requires only O(n2)
operations, so in our implementation we keep this computation on the CPU
side, while the GPUs perform the multiplication of the intermediate eigenvector
matrices Ẽi.

The independent parallelism generated by the D&C approach allows us to
distribute each division over half of the GPUs recursively. For example, half of
the GPUs will compute the upper part of the eigenvectors (involvingE1), and the
rest the lower part (involving E2). This imposes a constraint on the number of
GPUs to be multiple of 2. The implementation could be generalized to deal with
any number of GPUs, but based on the way the eigenvectors are generated we
don’t expect this would give more improvement. We plot in Figure 2c the speedup
of this kernel for various matrix sizes when increasing the number of GPUs. When
the computing intensive kernels are performed on the GPUs, it reduces the time
to compute such expensive operations, and thus the time required to solve the
memory bound secular equation becomes dominant, so we can expect that the
performance of this kernel to have limited scalability. Nonetheless, the obtained
scalability remains very attractive. We also modified the algorithm such that
when only a portion of the eigenvectors are required, the multiplication is done
with only this portion, reducing the total amount of computation.

4.5 Back Transformation

In this section, we discuss the application of the Householder reflectors generated
from the two stages of the reduction to tridiagonal. The first stage reduces the
original Hermitian matrix Ã to a band matrix by applying a two-sided transfor-
mation to Ã such that Ã = Q1SQ

H
1 . Similarly, the second stage (bulge chasing)

reduces the band matrix S to tridiagonal by applying the transformation from
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Fig. 3. (a) Tiling of V1, (b) Blocking technique to apply V2, (c) Distribution of the
eigenvectors matrix that create independent fashion of applying Q2 which increase
locality per core, (d) Portion of the DAG showing the dependency of the V’s of V2

both the left and the right side to S such that S = Q2TQ
H
2 . Thus, when the

eigenvectors matrix Z of Ã are requested, the eigenvectors matrix E resulting
from the eigensolver needs to be updated from the left by the Householder re-
flectors generated during the reduction phase, according to

Z = Q1Q2E = (I − V1t1V
H
1 )(I − V2t2V

H
2 )E, (3)

where (V1, t1) and (V2, t2) represent the Householder reflectors generated during
the reduction stages one and two, respectively.

The application of the V2 reflectors is not as simple as the application of V1,
and requires special attention. We represent the V2 in Figure 3b. Note that these
reflectors represent the annihilation of the band matrix, and thus each is of length
nb, where nb is the bandwidth size. A naive implementation would take each
reflector and apply it to the matrix E. Such an implementation is memory bound,
relying on BLAS 2 operations and thus gives poor performance. However, if we
want to group them to take advantage of the efficiency of BLAS 3 operations, we
must pay attention to the overlap between them and that their application must
follow the specific dependency order of the bulge chasing procedure in which
they were created. Let us give an example that explain those issues. For sweep
i (e.g., the column at position S(i,i):S(i,i+nb)), its annihilation creates a set of
k Householder reflectors vki , each of length nb represented in column i of the
matrix V2 depicted in Figure 3b. Similarly, the ones related to sweep i + 1 are
those presented in column i+1. They are shifted one element down compared to
those of sweep i. After analyzing the dependencies of the bulge chasing procedure
as explained by the example above, we notice that we can group the reflectors
vki from sweep i with those from sweep i+1, i+2,..., i+ l to apply them together
using a blocked technique according to the diamond shape region as defined
in Figure 3b. While each of those diamonds is considered as one block, their
application needs to follow the dependency order. For example, applying the
green block 4 and the red block 5 of the V2’s in Figure 3b modifies the green
block row 4 and the red block row 5, respectively, of the eigenvector matrix E
drawn in Figure 3c, where we can easily observe the overlapped region. According
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to the chasing order, block 4 needs to be applied before block 5. We have drawn
a sample of those dependencies by the arrows in Figure 3b. For clarity, we also
represented them by the DAG in Figure 3d. A little effort studying the pattern of
dependencies of this DAG leads us to the conclusion that designing an algorithm
based on such schema provides a very limited number of parallel and pipelined
tasks. Despite all of those constraints, a nice feature to create efficiency is that,
if we design our parallelism based on the matrix E, where we split E by block
column over the number of cores/GPUs as shown in Figure 3c, then we can apply
each diamond block independently to each portion of E. Moreover, this way does
not require any data communication between GPUs. The overlap between each
application of V ’s as described above increase the cache reuse. For the CPUs,
we also define the size of the block of E in a way to fit more than one region of it
in the L2 cache level to increase locality. We implemented a new kernel to deal
with these diamonds to increase the cache reuse and overlap the communication
to the GPUs. These blocks are broadcast to the GPUs in a look ahead fashion,
meaning that when GPUs are using the block V m

2 to update their portion of E,
the CPU broadcasts the next V m+1

2 in a overlapped technique.
The application of V1 to the resulting matrix from above,G = (I − V2T2V

T
2 )E,

can be done easily. First, there is no overlap between the different V1’s. Second,
they can be blocked as shown in Figure 3a. Thus their application is comput-
ing intensive and involves efficient BLAS 3 kernels. Using the same parallelism
design, the V1 can be applied independently to each block column of Figure 3c,
which are now the block of G and thus the distribution remains the same. This
operation does not require any communication between GPUs or between the
previous kernel (apply V2) and the current kernel (apply V1). Similarly, each
block of V1’s is broadcast over the GPUs in a look ahead fashion. This im-
plementation is independent and very suitable for parallel and heterogeneous
implementation, especially when communication is expensive. Speedup results
for matrices raising from 2000 to 40000 when varying the number of GPUs are
presented in Figure 2d, showing a very good speedup is obtained.

5 Experimental Results

The eigensolver presented in this paper was tested on an experimental machine
offering a dual-socket six-core Intel Xeon 5675 running at 3.07 GHz, with 48
GB of main system memory and 8 NVIDIA Fermi M2090 GPUs. We tested
the distributed memory libraries on a tightly coupled computing cluster sys-
tem, offering nodes based on the dual-socket six-core Intel Xeon 5650 processor
architecture, running at 2.6 GHz, with 24 GB of main system memory per node.

5.1 Accuracy Analysis

We mention that the only difference, numerically, between our algorithm and the
LAPACK algorithm is that we use a two-stage algorithm for the reduction to
tridiagonal. The reduction to tridiagonal relies on the Householder elimination,
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which has been proved to be backward stable and accurate, and hence we expect
the same accuracy as LAPACK. Our implementation of the divide and conquer
is based on the main Cuppen algorithm and is exactly the same as the one
implemented in the LAPACK library. All of our experiments obtained the same
order of accuracy as that computed by the LAPACK solver, using the metrics
described in the LAPACK Users’ Guide [2].

5.2 Performance Scalability

We performed an extensive study with a large number of experimental tests to
give the reader as much information as possible. We computed the eigenpairs
of the generalized eigenvalue problem, varying the size of matrices from 2000 to
40000 and varying from 1 to 8 GPUs. Figure 4a shows the speedup obtained by
our hybrid multi-GPU symmetric generalized eigenvalue solver as compared to
its one GPU implementation. As expected, the speedup performance obtained
has a similar trend to the ones presented above in Figure 4 for each kernel of
the algorithm. Strong scalability is observed as, for a fixed matrix size, when we
increase the number of GPUs the time should decrease linearly. The results show
a very good scalability for our implementation on such an heterogeneous hybrid
system with a huge computing intensive component (8 GPUs) connected to it.
We can see that although some kernels of this algorithm are strictly multicore
CPU implementations (the bulge chasing and the secular equation solver), our
hybrid multi-GPU implementation provides a very attractive scalability. On four
GPUs, our approach is able to run three times faster than on one GPU, which is
considered to be very good scalability. On a larger number of GPUs, it requires
large matrices to be able to see the asymptotic scaling behavior.
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5.3 Performance Results

We compare the performance of our hybrid multi-GPU eigensolver against the
optimized state-of-the-art numerical linear algebra library ScaLAPACK, and
the ELPA library, using both the one stage and the two stage reduction. We
ran tests for ELPA and ScaLAPACK for various problem sizes, while varying
the number of processors from 24 to 240. The results reported here are the best
results achieved. In our tests we found that both one stage and two stage ELPA
implementations show good scalability compared to ScaLAPACK; the required
time decreases three times when increasing the number of processors from 48 to
192. We also found that the two-stage approach of the ELPA solver was faster
than its one-stage approach for any number of nodes and any percentage of the
eigenvectors requested, and so we omit results of the one stage of ELPA from our
graphs. Figure 4b shows the time needed for all the solvers to find the solution
of the generalized eigenvalue problem for a matrix of size 20000. For ScaLA-
PACK and ELPA, we give results on four nodes, each dual-socket six-core (48
processors), and also on 16 nodes (192 processors), which have reasonable time
compared to our multi-GPU solver. These distributed and GPU-based systems
have comparable peak matrix-matrix multiply performance: 48 processors has
460 Gflop/s peak, compared to 500 Gflop/s using 12 cores plus one GPU, while
192 processors has 1.9 Tflop/s peak, compared to 1.6 Tflop/s using 12 cores plus
four GPUs. Comparing to our approach, we can see that, to solve the generalized
eigenvalue problem computing all (100%) of its eigenpairs, the time needed by
ScaLAPACK on 192 processors and by the ELPA implementation on 48 proces-
sors is very close to the time needed by our hybrid multi-GPU solver running
with only one GPU. Similarly, the time needed by the ELPA solver running on
192 processors is similar to the time needed by our multi-GPU solver running
on only four Fermi GPUs. This behavior has also been observed for other ma-
trices size, in particular, for a matrix of size 30000, the ELPA solver running
on 192 cores requires 327 seconds to find all of its eigenpairs, while our hybrid
multi-GPU solver running with four Fermi GPUs needs 314 seconds. These re-
sults show that with only a small numbers of devices, an efficient multi-GPU
implementation can achieve as much speed as one of the best solvers on 192
processors.

As many applications need only a portion of the eigenvectors, we also present
in Figure 4b the comparison with the ELPA solver when only 20% of the eigen-
vectors are needed. The trend shown here is again similar to the performance
shown when all the eigenpairs are computed. For example, for matrices of size
20000 and 30000, the ELPA solver running on 192 processors requires 63 seconds
and 218 seconds respectively, while our solver running on four GPUs requires
57 seconds and 174 seconds respectively. We note here that when a fraction of
the eigenvectors are computed, both our approach and the two stage ELPA are
significantly faster than the one stage approach implemented in either ELPA or
ScaLAPACK.
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5.4 Real Electronic Structure Application

We did preliminary experiments in the context of a real electronic structure ap-
plication. We performed a ground state computation for the Eu6C60 compound
with the density functional method. The density functional calculations was done
with a new prototype of a linearized augmented plane wave (LAPW) library [].
During each iteration a generalized eigenvalue problem of size 25383 in double
complex precision, requiring the 1335 eigenvectors with the lowest eigenvalues,
has to be solved. We note that this latter consists of 67% of the total itera-
tion time when solved on a distributed system and could be decreased down to
around 20% when solved with our multi-GPU implementations meaning that
the time per iteration could be speeded up 3 to 4 times.

The experiment has been done on a cluster of Intel XeonE5-2670 (SandyBridge)
2.6 GHz processors. The time required to perform each iteration using the ScaLa-
pack library is 787 and 263 seconds using 64 and 256 MPI processes, respectively.
Of that, 525 and 175 seconds, respectively, are spent solving the generalized eigen-
value problem (67% of the time per iteration). Using only one node (consisting of
16 processors of the same type) with 4 Nvidia K20 GPUs, we were able to reduce
the time of the generalized eigensolver to 145 seconds, which will provide a huge
boost. The total number of iterations needed depends on the compound and on
the mixer used, and usually it varies between 20 and 100 iterations.

6 Conclusions and Future Directions

We demonstrated that it is possible to develop efficient and scalable algorithms
for heterogeneous systems with an enormous gap between their computing power
and interconnection bandwidth. Our hybrid multi-CPU-GPU implementation
demonstrated very promising results in terms of performance as well as in terms
of scalability on heterogeneous architecture systems. It has been extensively
tested using different matrix types and many parallel configuration against other
well-known generalized symmetric eigenvalue solvers. The performance obtained
is very encouraging. These results show the impact of our work on applications,
especially the field of electronic structure computations where a large number
of dense generalized eigenvalue problem need to be solved in the solution of
Schrödinger equation, thus the choice of a suitable method is of great impor-
tance. We believe that these techniques will only increase in relevance for up-
coming architectures.We plan to further study the implementation of multi-GPU
algorithms in a distributed computing environment.
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