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ABSTRACT
This paper presents the design and implementation of several fun-
damental dense linear algebra (DLA) algorithms in OpenCL. In
particular, these are linear system solvers and eigenvalue problem
solvers. Further, we give an overview of the clMAGMA library, an
open source, high performance OpenCL library that incorporates
various optimizations, and in general provides the DLA functional-
ity of the popular LAPACK library on heterogeneous architectures.
The LAPACK-compliance and use of OpenCL simplify the use of
clMAGMA in applications, while providing them with portable
performance. High performance is obtained through the use of the
high-performance OpenCL BLAS, hardware- and OpenCL-specific
tuning, and a hybridization methodology, where we split the algo-
rithm into computational tasks of various granularities. Execution
of those tasks is efficiently scheduled over the heterogeneous hard-
ware components by minimizing data movements and mapping
algorithmic requirements to the architectural strengths of the various
heterogeneous hardware components.

Categories and Subject Descriptors
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G.4 [Mathematical software]: Algorithm design and analysis, Ef-
ficiency, Parallel implementations, Portability; G.1.3 [Numerical
analysis]: Numerical linear algebra—linear systems, matrix inver-
sion, eigenvalues and eigenvectors

1. INTRODUCTION
Solving linear systems of equations and eigenvalue problems is fun-
damental to scientific computing. The popular LAPACK library [5],
and in particular its vendor optimized implementations like Intel’s
MKL [13] or AMD’s ACML [3], have been the libraries of choice
to provide these solvers for dense matrices on shared memory sys-
tems. This paper considers a redesign of the LAPACK algorithms
to facilitate their OpenCL implementation, and to add efficient sup-
port for heterogeneous systems of multicore processors with GPU
accelerators and coprocessors. This is not the first time that DLA
libraries have needed a redesign to be efficient on new architectures –
notable examples being the move from LINPACK [10] to LAPACK
[5] in the 80’s to make the algorithms cache friendly; ScaLAPACK
[8] in the 90’s to support distributed memory systems, and now
the PLASMA and MAGMA libraries that [1] target efficiency on
multicore and heterogeneous architectures, respectively.

The development of new high-performance numerical libraries is
complex, and requires accounting for the extreme level of paral-
lelism, heterogeneity, and wide variety of accelerators and copro-
cessors available in current architectures. Challenges vary from
new algorithmic designs to choices of programming models, lan-
guages, and frameworks that ease development, future maintenance,
and portability. This paper addresses these issues while presenting
our approach and algorithmic designs in the development of the
clMAGMA [9] library.

To provide portability across a variety of GPU accelerators and
coprocessors (such as Intel Xeon Phi), clMAGMA uses OpenCL
[14]. OpenCL is an open standard for off-loading computations to
accelerators, coprocessors, and manycore processors. It is main-
tained by the Khronos group with the backing of major hardware
and software industry vendors. It offers portability across hardware
and OS software. Although the use of OpenCL provides portability



of code; cross-device performance portability is not guaranteed. We
specifically address this in Section 2.

To deal with the extreme level of parallelism and heterogeneity
inherent in current architectures, clMAGMA uses a hybridization
methodology, described in Section 3, where we split the algorithms
of interest into computational tasks of various granularities, and
properly schedule these tasks’ execution over the heterogeneous
hardware. To do this, we use a Directed Acyclic Graph (DAG)
approach to parallelism and scheduling that has been developed and
successfully used for dense linear algebra libraries such as PLASMA
and MAGMA [1], as well as in general task-based approaches to
parallelism with runtime systems like StarPU [6] and SMPSs [7].
Note, however, that we do not use OpenCL to execute the DAG on
the CPU but, rather, we use native threading (pthread in the case
of Linux) combined with our own scheduler called QUARK [20],
that was developed before OpenCL gained a wide spread use.

Besides the general cross-device considerations addressed in Section
2, obtaining high performance in OpenCL depends on a combina-
tion of algorithm and hardware-specific optimizations, discussed in
Section 4. The implication of this in terms of software is the fact
that in order to maintain its performance portability across hardware
variations, there is a need to ensure that the algorithmic variations
therein are tunable, e.g., at installation time. This is the basis of
autotuning, which is an example of these advanced optimization
techniques.

A performance study on AMD hardware is presented in Section
5. Besides verifying our approaches and confirming the appeal of
OpenCL and accelerators for high-performance DLA, the results
open up a number of future work opportunities discussed in our
conclusions.

2. CROSS-DEVICE CONSIDERATIONS
A recommended approach to developing a high-performance and
easy to maintain DLA library is to express the algorithms of interest
in terms of the BLAS standard. Performance portability is then ob-
tained through the use of architecture-specific, highly tuned BLAS
implementations (e.g., MKL from Intel or ACML from AMD). LA-
PACK and ScaLAPACK have demonstrated this over the years,
and now we see it in the new MAGMA and PLASMA libraries.
The clMAGMA library takes the same approach, and therefore per-
formance portability relies on the availability of portable OpenCL
BLAS, discussed in Section 2.1. Specifics related to OpenCL and its
implementation are also important for obtaining high-performance
and must be addressed while designing and tuning OpenCL algo-
rithms. Well designed microbenchmarks, shown in Section 2.2, can
be used to obtain these key OpenCL specifics to achieving high
performance.

2.1 Portable OpenCL BLAS
The Automatically Tuned Linear Algebra Software (ATLAS) library
[19] is a BLAS implementation for CPUs. ATLAS achieves portable
performance across CPUs mainly by relying on empirical autotun-
ing. Still, vendor libraries like MKL and ACML, optimized for their
specific architectures, provide higher performing implementations.
The same is true with OpenCL BLAS implementations – OpenCL
provides software portability, but unless tuned for a particular archi-
tecture, optimization opportunities can be missed.

Currently, the most complete OpenCL BLAS implementation is
AMD’s clAmdBlas, provided through the AMD’s Accelerated Par-

allel Processing Math Libraries (APPML) [2]. It can be used on
architectures other than AMD, but its tuning, and therefore highest
efficiency, will likely be achieved on AMD hardware. The potential
of OpenCL to express BLAS algorithms, as opposed to other lower
level access to the hardware, while obtaining high performance is
evident through the clAmdBlas. Other implementations, e.g., from
Nakasato et al. [16, 15], confirm this by obtaining impressive high
performance matrix-matrix multiplication (GEMM). In particular,
the highest performance that we are aware of has been demonstrated
by Matsumoto et al. [15] – their OpenCL DGEMM reaches up
to 848 Gflop/s, and SGEMM up to 2,646 Gflop/s, which is 90%
and 70% of the double and single precision peak, respectively. The
results come from AMD’s Tahiti GPU (Radeon HD 7970).

In our previous work, we evaluated OpenCL as a programming tool
for performance-portable BLAS [11]. Triangular solvers (TRSM)
and GEMMs were developed in OpenCL, tuned for a specific device,
and compared. The conclusion was that OpenCL the overhead
associated with environment setup is large and should be minimized,
e.g., by preprocessing or localized in library initialization routines.
More importantly, the presented performance results confirmed the
conclusion above that OpenCL is expressive enough for developing
high performance BLAS, so long as architectural specifics are taken
into account in the algorithm design. Even though good performance
should not be expected from blindly running algorithms on a new
platform, autotuning heuristics can help to improve performance on
a single platform.

Autotuning mechanisms are already provided in clAmdBlas through
a tuning tool that the user can run to produce optimized OpenCL
BLAS on the architecture of interest. Thus, as performance porta-
bility of OpenCL BLAS can be obtained, organizing higher-level
libraries like clMAGMA in terms of OpenCL BLAS can ensure
their performance portability as well.

2.2 Microbenchmarks
We developed a number of microbenchmarks to help us gain a better
understanding of OpenCL and to guide our algorithm design and
tuning. We describe two benchmarks that can be instrumental for
performance – kernel launch overhead and CPU-GPU data transfer.
To add some context to the reported measurements, we include
comparisons with corresponding CUDA measurements.

2.2.1 Kernel launch overhead
The time to asynchronously invoke OpenCL 1.2 AMD-APP (1016.4)
kernel on an AMD Tahiti GPU (Radeon HD 7900 Series) varies
in the 5.59–8.88µs range. This was measured by asynchronously
launching an empty kernel a large number of times and synchroniz-
ing at the end. The overhead can increase significantly (it could be
up to two orders of magnitude depending on hardware and software
configuration) when synchronizing after each kernel invocation,
and therefore synchronization should be avoided. Similar bench-
marks for CUDA 4.2 [18] showed an overhead of 3–7µs with no
synchronization between kernels, and 10–14µs with synchroniza-
tion between kernels. It should be stressed that this comparison is
between two different programming models, software implemen-
tations, and hardware configurations. As such, we only mean to
suggest an efficient usage scenarios.

We also benchmarked the kernel launch overhead for four BLAS
functions: DGEMM, DTRSM, DTRMM and DSYRK, which are
used in the double precision LU, Cholesky and QR factorizations.
In order to compare with OpenCL, the benchmark for CUDA was
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Figure 1: The launch overhead of the GPU BLAS functions
for clAmdBlas 1.8.286 with OpenCL 1.2 AMD-APP (1016.4) on
Radeon HD 7970 and CUBLAS 4.2 on Tesla S2050, using PCIe
2.0 CPU-GPU interface.

tested on an NVIDIA Fermi GPU (Tesla S2050). Results for the
kernel launch overhead of OpenCL and CUDA BLAS functions are
shown in Figure 1. The OpenCL BLAS functions are from AMD’s
clAmdBlas 1.8.286 and the CUDA functions are from CUBLAS
4.2. The BLAS functions in clAmdBlas have 6–10 µs asynchronous
launch overhead versus 4–5µs in CUBLAS. For synchronous launch
overhead, CUBLAS takes only 16–18µs, while clAmdBlas can take
significantly longer, and as discussed, synchronization after BLAS
kernel invocations should be avoided. Both the CUDA and OpenCL
measurements used a PCIe 2.0 interface between CPU and GPU. The
hardware and software were different and the comparison is, again,
given only to steer the reader towards the beneficial programming
patterns.

2.2.2 CPU-GPU data transfer overhead
Transfer time for contiguous data between CPU and GPU can be
modeled as

time = latency+
bytes transferred
PCIe bandwidth

. (1)

On our system, an AMD Radeon HD 7970 card with PCIe 2.0
interface, the measured PCIe bandwidth was 2.82 GB/s from CPU
to GPU and 3.29 GB/s from GPU to CPU. We found that the latency
was 50–60µs from CPU to GPU and 140–150µs from GPU to
CPU. Latencies in CUDA is in the 10–17µs range [18], albeit on
a different hardware configuration. On our system, that featured
an NVIDIA Tesla S2050 with PCIe 2.0 interface, we measured
13–14µs latency in both directions. To avoid the higher latencies
associated with synchronizations, algorithms must be designed to
use asynchronous data transfers.

3. DENSE LINEAR ALGEBRA IN OPENCL
3.1 Hybridization methodology
The hybridization methodology used in MAGMA [17] is now used
in clMAGMA. It is an extension of the task-based approach for par-
allelism and developing DLA on homogeneous multicore systems
[1]. In particular,

Figure 2: DLA algorithm as a collection of BLAS-based tasks
and their dependencies. The algorithm’s critical path is, in gen-
eral, scheduled on the CPUs, and large data-parallel tasks on
the GPUs.

• The computation is split into BLAS-based tasks of various
granularities, with their data dependencies, as shown in Fig-
ure 2.

• Small, latency-bound tasks with significant control-flow are
scheduled on the CPUs.

• Large, compute-bound tasks are scheduled on GPUs.

The difference between multicore algorithms and hybridization is
the task splitting, which are of various granularities to make different
tasks suitable for particular hardware. The scheduling itself is also
different.

Challenges with this approach vary from algorithmic designs to
tuning for performance portability and balancing work between the
CPU cores and the GPUs. Specific algorithms using this method-
ology, and covering the main classes of DLA, are described in the
subsequent sections.

3.2 The clMAGMA design and functionality
The clMAGMA interface is similar to LAPACK. For example, com-
pare LAPACK’s LU factorization interface vs. clMAGMA’s:

lapackf77_dgetrf(&M,&N, hA, &lda, ipiv, &info)
magma_dgetrf_gpu( M, N, dA,0, ldda, ipiv, &info,

queue)

Here hA is a CPU pointer (double *) to the matrix of interest in the CPU
memory and dA is a pointer in the GPU memory (magmaDouble_ptr).
The last argument in every clMAGMA call is an OpenCL queue, through
which the computation will be streamed on the GPU (magma_queue_t).

To relieve the user from knowing OpenCL, all OpenCL data types and main
functions, such as BLAS, CPU-GPU data transfers, and memory allocations
and deallocations, are redefined in terms of clMAGMA data types and func-
tions. This design allows us to more easily port the MAGMA functionality
to clMAGMA, and eventually to merge them altogether while maintaining
a single source. Also, the clMAGMA wrappers are often simpler in syntax
than the corresponding OpenCL functions, and provide a comprehensive set
of functions for programming hybrid high-performance numerical libraries.
Thus, not only the users but also the application developers can choose to
use the clMAGMA wrappers without knowing OpenCL. While this might be



detrimental from the standpoint of transparency, we cater for a user base that
keeps its focus on the scientific applications and would like to keep using
the familiar MAGMA interface, which in turn was largely influenced by
LAPACK – the de facto industry standard for interfacing with dense linear
algebra software.

clMAGMA provides the standard four floating point arithmetic precisions
– single real, double real, single complex, and double complex. There are
routines for the so called one-sided factorizations (LU, QR, and Cholesky),
two-sided factorizations (Hessenberg, bi-, and tridiagonal reductions), lin-
ear system and least squares solvers, matrix inversions, symmetric and
non-symmetric standard eigenvalue problems, SVD, and orthogonal trans-
formation routines, all described in the subsections below.

As discussed in [11], compiling OpenCL kernel from source file introduces
significant amount of overhead. By caching the Intermediate Representa-
tion (IR) resulting from clGetProgramInfo to disk and loading at runtime,
overhead can be effectively reduced. AMD and NVIDIA’s OpenCL imple-
mentations both allow such maneuver, which is essential for the performance
of clMAGMA since GPU kernels could be repeated called in different rou-
tines. An efficient way to handle the kernel compiling and catching is
required. In clMAGMA, a runtime system is implemented to fulfill this task.

The runtime system, coded in C++ as a singleton class, provides two pieces
of functionality depending on the usage phases: during installation, runtime
system compiles OpenCL source files into IRs and stores them to disk;
during execution time, the runtime system loads IRs to memory and further
builds them into platform specific executables. At the beginning of the user
level program, the runtime system compiles IR loaded from disk and setups
mapping between the name of the OpenCL kernel and its platform specific
executables through a series of hash-tables. This initialization process only
executes once to avoid repeated compiling and allow reusing executables
across different higher level routines.

3.3 LU, QR, and Cholesky factorizations
The one-sided factorizations routines implemented and currently available
through clMAGMA are:

magma_zgetrf_gpu computes an LU factorization of a general M-by-N
matrix A using partial pivoting with row interchanges;

magma_zgeqrf_gpu computes a QR factorization of a general M-by-N
matrix A;

magma_zpotrf_gpu computes the Cholesky factorization of a complex
Hermitian positive definite matrix A.

Routines in all four standard floating-point precisions are available, following
LAPACK’s naming convention. Namely, the first letter of the routine name
(after the prefix magma_) indicates the precision – z, c, d, or s for double
complex, single complex, double real, or single real, respectively. The suffix
_gpu indicates that the input matrix and the output are located in the GPU
memory.

The typical hybrid computation and communication pattern for the one-sided
factorizations (LU, QR and Cholesky) is shown in Figure 3. At a given itera-
tion, panel dP is copied to the CPU and factored using a LAPACK routine,
and the result is copied back to the GPU. The trailing matrix, consisting of
the next panel T1 and submatrix T2, is updated on the GPU. After receiving
dP back from the CPU, T1 is updated first using dP and the result is sent to
the CPU (as being the next panel to be factored there). While the CPU starts
the factorization of T1, the rest of the trailing matrix, T2, is updated on the
GPU in parallel with the CPU factorization of panel T1. In this pattern, only
the data to the right of the current panel is accessed and modified, and the
factorizations that use it are known as right-looking. The computation can
be organized differently – to access and modify data only to the left of the
panel – in which case the factorizations are known as left-looking.

An example of a left-looking factorization, demonstrating a hybrid algorithm
implementation, is given in Figure 4 for the Cholesky factorization. Copying
the panel to the CPU, in this case just a square block on the diagonal, is
done in line 4. The data transfer is asynchronous, so before we factor it

Figure 3: Typical computational pattern for the hybrid one-
sided factorizations in clMAGMA.

on the CPU (line 8), we synchronize in line 7 to enforce that the data has
arrived. Note that the CPU work from line 8 is overlapped with the GPU
work in line 6. This is indeed the case because line 6 is an asynchronous
call/request from the CPU to the GPU to start the ZGEMM operation. Thus,
the control is passed to lines 7 and 8 while the GPU is performing ZGEMM.
The resulting factored panel from the CPU work is sent to the GPU in line 11
and used there in line 14, after making sure that it has arrived (the sync in
line 13).

Figure 4: Cholesky factorization in clMAGMA.

3.4 Orthogonal transformation routines
The orthogonal transformation routines implemented and currently available
through clMAGMA are:

magma_zungqr[_gpu] generates an M-by-N matrix Q with orthonor-
mal columns, which is defined as the first N columns of a product of K
elementary reflectors of order M as returned by magma_zgeqrf_gpu;

magma_zunmqr[_gpu] overwrites a general complex M-by-N matrix C
with QC or CQ, where Q can also be transposed or not.

The routines are available in all four precisions, and in both CPU (input and
output is on the CPU) and GPU interfaces.

Typical uses of the QR factorization require computing the product QC
for some matrix C (the zunmqr routine). For efficiency, the matrix Q
is represented implicitly as a product of block Householder reflectors of
the form I−ViTiV T

i , for i = 1, . . . ,k. Instead of forming Q explicitly and
then performing a matrix-matrix multiplication, it is cheaper to apply the
block Householder reflectors directly. Applying each reflector requires three
matrix-matrix multiplies, which clMAGMA performs on the GPU. The V
matrices are tall and skinny, with the upper triangle logically zero, as shown
in Figure 5. In LAPACK, the upper triangle of each V contains the R matrix;
in clMAGMA, when V is copied to the GPU, the upper triangle is explicitly



set to zero. This allows us to simplify the code and improve performance
using a single GEMM, instead of a less-efficient triangular multiply (TRMM)
and a GEMM. The only work on the CPU is computing the Ti matrices when
necessary.

If the Q matrix is needed explicitly, clMAGMA can compute it (the zungqr
routine) by multiplying the implicitly-represented Q with identity matrix I.
This is done in a block-by-block fashion in order to keep it in-place, while
overwriting the implicit Q (the V Householder vectors) with the explicit Q.

Similar routines are used by clMAGMA in the eigenvalue and SVD prob-
lems, where orthogonal transformations are applied to back-transform the
eigenvectors or singular vectors.

3.5 Hessenberg, bi- and tridiagonal reductions
The two-sided factorizations routines currently implemented in clMAGMA
are:

magma_zgehrd reduces a general matrix A to upper Hessenberg form H
by orthogonal similarity transformations;

magma_zhetrd reduces a Hermitian matrix A to real symmetric tridiago-
nal form T by orthogonal similarity transformations;

magma_zgebrd reduces a general M-by-N matrix A to upper or lower
bidiagonal form B by orthogonal transformations.

The routines are available in all four precisions.

The Hessenberg, bidiagonal, and tridiagonal reductions are two-sided factor-
izations used in the non-symmetric eigenvalue, symmetric eigenvalue, and
SVD problems, respectively. The standard one-stage approach to solving
the non-symmetric eigenvalue problem applies an orthogonal transformation
Q to both sides of the matrix A to reduce it to the upper Hessenberg form,
H = QAQT . QR iteration is then used to find the eigenvalues and eigenvec-
tors of H; the eigenvalues of H are the same as the eigenvalues of A, while
the eigenvectors can be back-transformed using Q to find the eigenvectors of
A.
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Figure 5: Typical communication pattern for the hybrid two-
sided factorizations in clMAGMA.

Unlike the QR factorization, where the panel factorization is independent of
the trailing matrix, in the Hessenberg reduction, each column of the panel
requires a matrix-vector product (GEMV) with the trailing matrix. We take
advantage of the high bandwidth of GPUs to accelerate these memory-bound
GEMV operations during the panel factorization. The outline of algorithm is
shown in Figure 5. A panel dPi is copied from the GPU to the CPU (step 1).
For each column j of the panel, a Householder vector v j is computed (step 2)
and the matrix-vector product y j = A jv j is computed with the trailing matrix
on the GPU (step 3). After the panel factorization, the block Householder
reflector is applied with several GEMMs to update the trailing matrix, and
completed portions of the trailing matrix are copied back to the CPU (step 4).
Note that in this pattern the communication-to-computation is in a surface-
to-volume ratio – sending a vector of length n is followed by 2n2 flops (in
the inner loop), and sending a panel of size n×nb is followed by O(n2×nb)
flops (in the outer loop).

Similarly, the symmetric eigenvalue problem involves an initial reduction
to tridiagonal form, and the SVD involves an initial reduction to bidiago-
nal form. The exact details differ from the Hessenberg factorization, but,
in a similar fashion, the panel factorization involves matrix-vector prod-
ucts (GEMV or SYMV), which clMAGMA performs on the GPU to take
advantage of the high memory bandwidth of the device.

Recent success in MAGMA with two-stage algorithms for the tridiagonal
reduction [12] demonstrate that we can recast it using compute-bound Level-
3 BLAS SYMM operations, instead of memory-bound Level-2 BLAS SYMV
operations. This provides a large speed boost compared to the traditional
one-stage algorithm. Future work on clMAGMA involves porting these
two-stage algorithms, where we expect a similar speed increase.

3.6 Linear system and eigenproblem solvers
The one- and two-sided factorizations are the major building blocks for
developing linear system and eigenproblem solvers, respectively. We have
developed the following solvers:

magma_zpotrs_gpu solves a system of linear equations Ax = B with a
Hermitian positive definite matrix A using the Cholesky factorization
of A;

magma_zgetrs_gpu solves a system of linear equations with general
N-by-N matrix A using the LU factorization of A;

magma_zgels_gpu solves the overdetermined least squares problem,
min ||Ax−B||, using the QR factorization of A;

magma_zheevd computes all eigenvalues and, optionally, eigenvectors
of a complex Hermitian matrix A. If eigenvectors are desired, it uses
a divide and conquer algorithm;

magma_zgeev computes the eigenvalues and, optionally, the left and/or
right eigenvectors for an N-by-N complex non-symmetric matrix A;

magma_zgesvd computes the singular value decomposition (SVD) of a
complex M-by-N matrix A, optionally computing the left and/or right
singular vectors.

The routines are available in all four precisions. The linear solvers use the
hybrid clMAGMA one-sided factorization routines and triangular matrix
solvers, as provided by their OpenCL BLAS implementations. The eigen-
problem solvers use the hybrid clMAGMA two-sided factorizations, which
are the most time consuming parts of the algorithms. The rest is run on the
CPUs, using vendor optimized LAPACK.

Related to the linear solvers, clMAGMA provides matrix inversion routines
as well. These are the:

magma_ztrtri_gpu for computing the inverse of a real upper or lower
triangular matrix;

magma_zgetri_gpu for computing the inverse of a matrix using the LU
factorization computed by magma_zgetrf_gpu;

magma_zpotri_gpu for computing the inverse of a real symmetric pos-
itive definite matrix using its Cholesky factorization computed by
magma_zpotrf_gpu.

The triangular inverse routine is a hybrid, derived from the corresponding
block LAPACK algorithm. The diagonal blocks of the matrix are sent
and inverted on the CPU, and everything else is done on the GPU. The LU
inversion uses magma_ztrtri_gpu to invert U and then computes inv(A)
by solving the system inv(A)L = inv(U) for inv(A) (entirely on the GPU).
The magma_zpotri_gpu also uses magma_ztrtri_gpu to invert the
upper (U) or lower (L) factor of the Cholesky factorization, and a hybrid
code (routine magma_zlauum_gpu) to compute the product UU ′ or L′L.

4. ADVANCED OPTIMIZATIONS
We highlight three optimization techniques that are crucial for obtaining high
performance. The first one, overlapping CPU-GPU communication with
GPU computation, is important because of the slow CPU-GPU interconnect
relative to the GPU performance capabilities. For example, sending a few



bytes between the CPU and GPU without overlap can result in losing the
opportunity to compute hundreds of double precision flops on the GPU. The
second one, overlapping CPU and GPU work, allows us to use the entire
system more efficiently. Finally, autotuning is a technique that removes the
need for manual tuning and enables cross-device performance portability.

The optimizations described in Sections 4.1 and 4.2 target specifically AMD
hardware and AMD’s OpenCL implementation, while Section 4.3 addresses
the cross-device portability.

4.1 Overlapping CPU-GPU communications
with GPU computation

In Section 2, we saw that OpenCL can have higher CPU-GPU data transfer
latency overhead than CUDA, which can reduce the effective bandwidth
when a small size of data is transferred between the CPU and GPU. Thus,
this can become a performance bottleneck, unless it is overlapped with useful
GPU work (or minimized with other optimization techniques). Figure 6
shows part of the trace of a double precision LU factorization in clMAGMA:
the first row is the CPU work, where the black color represents the time
of panel factorization; the second row is the GPU work, where the red
color represents DGEMM operations and green color represents DTRSM.
Yellow color reflects the time to copy the data from GPU to CPU and grey is
copying the data from CPU to GPU. Although computation on the CPU has
overlapped with the GPU, communication and computation on the GPU are
executed sequentially.

Figure 6: Partial CPU-GPU execution trace of a hybrid LU
factorization in clMAGMA. Yellow and gray represent CPU-
GPU communication that in this case are not overlapped with
the GPU work.

In OpenCL, performing work on a device, such as executing kernels or mov-
ing data to and from the device’s local memory, is done using a corresponding
command queue [4]. A command queue is an interface for a specific device
and its associated work. A way to overlap CPU-GPU communication and
GPU computation is by creating two command queues. One queue is used
for data transfers and the other is used for kernel computations. Figure 7
shows a part of the trace of double precision LU factorization similar to
Figure 6, but here we have applied the optimization of using two queues.
The first row is again the CPU work, the second row is the computation work
of queue 1 on the GPU, and the third row is the communication work of
queue 2. All color definitions are the same as in Figure 7. Note that based
on this two-queue technique, we made the communication overlap with the
GPU computation work. Experiments showed that this approach lead to
about 10% increase of performance for double precision LU factorization.

From the above two traces, we also notice that there are some blank gaps
between different kernels on the GPU. Those represent overheads of kernel
switching on the GPU.

4.2 Overlapping CPU and GPU work
In OpenCL, the host creates a data structure called a command-queue to co-
ordinate execution of the kernels on the devices. The host places commands
into the command-queue which are then scheduled onto the devices. For
example, in Figure 4, line 6 puts a ZGEMM in the command-queue queue.
The host still must submit the ZGEMM to the device for execution, but this
may not happen immediately. As a result, the CPU can start the computation
at line 8 while the device has not started the ZGEMM. Thus, although our
high-level algorithm is designed to overlap CPU and GPU work, overlap

Figure 7: Partial CPU-GPU execution trace of a hybrid LU
factorization in clMAGMA based on the two command queues’
optimization, overlapping CPU-GPU data transfers (the yellow
and gray transfers in GPU Queue 2) with GPU work (in GPU
Queue 1).

may not happen in practice. In order to force the command-queue to imme-
diately submit the command queued to the appropriate device, one must call
clFlush(queue) [4]. Therefore, all clMAGMA BLAS wrappers first
queue the corresponding OpenCL BLAS and immediately post a clFlush
to the queue.

The importance of overlapping CPU and GPU work is quantified in Figure 8
for the case of LU factorization in double precision (the DGETRF routine).
The blue curve is the performance of DGETRF without CPU and GPU work
overlap. It achieves up to 195 Gflop/s. The red curve is the performance
of DGETRF with overlapping CPU and GPU work, using clFlush. It
achieves up to 280 Gflop/s, i.e., getting about 1.4× speedup.

Figure 8: Advanced performance optimizations of DGETRF in
clMAGMA.

Figure 8 also shows the effect of further optimizations, and, in particular, the
technique of using two queues to overlap CPU-GPU communications with
GPU computation (from the previous subsection), and using pinned memory
to get higher transfer throughput between the CPU and GPU. Putting all
these optimizations together, the performance of dgetrf is shown with the
purple curve. It achieves up to 326 Gflop/s, which is almost a 60% speedup
compared to the original version without any optimizations.

It is worth noting that OpenCL implementations may differ in their treatment
and the effects of clFlush. Also important is the fact that the specific
behavior of multiple command queues and their interaction with a single
device will likely be different between vendors and their implementations.

Another method for overlap is the use of out-of-order command queues but
they were not supported on the hardware/software combinations that we had
available for our tests.

4.3 Autotuning
While functionality of an OpenCL code is portable, the resulting performance
often is not. However, it is commonly sufficient to rely on highly optimized
BLAS that are provided by the vendor to guarantee transportable efficiency in
terms of the peak performance. This is clearly predicated on the fact that the
BLAS is of high quality and is capable of providing very efficient execution
across a wide range of input parameters including matrix dimensions and



data-dependent characteristics such as symmetry or transposition. In practice,
this requirement might not be fulfilled, in which case it is necessary to use
customized versions of some of the kernels or maybe just one specific
instance of the kernel for particular matrix shapes. In our current tests, we
did not use autotuning to improve performance.

5. PERFORMANCE STUDY
The performance results provided in this section use AMD’s Radeon HD
7970 card and its multicore host, a single socket six-core AMD Phenom II
X6 1100T CPU running at 3.71 GHz. Kernels executed on the CPU use
LAPACK and BLAS from MKL 11.1, and BLAS kernels executed on the
GPU are from clAmdBlas 1.8. The OpenCL version is 1.2. We installed
AMD-APP 1016.4 as the OpenCL driver. Currently the AMD OpenCL driver
for Linux has a 512 MB maximum limit for a single memory allocation on
the GPU, so in our experiments we only tested matrix sizes of up to 8,000
(in double precision arithmetic).

The performance of double precision LU factorization in clMAGMA is given
in Figure 9. It achieves up to 326 Gflop/s, getting about 5.7× speedup versus
the six-core CPU host.

Figure 9: Performance of clMAGMA’s LU factorization in dou-
ble precision compared against MKL 11.1

The performance of the double precision Cholesky factorization in clMAGMA
is shown in Figure 10. It achieves up to 344 Gflop/s, which is about 5.4×
speedup versus the six-core CPU host.

Figure 10: Performance of clMAGMA’s Cholesky factorization
in double precision compared against MKL 11.1

The performance of the double precision QR factorization in clMAGMA
is shown in Figure 11. It achieves up to 347 Gflop/s, which is about 5.9×
speedup versus the six-core CPU host.

The performance of the double precision Hessenberg factorization in clMAGMA
is shown in Figure 12. It achieves up to 40 Gflop/s, which is about 5.5×
speedup versus the six-core CPU host.

The performance of the double precision matrix inversion in clMAGMA
(magma_zgetri_gpu) is shown in Figure 13. It achieves up to 48 Gflop/s,
which is about 1.2× speedup versus the CPU host.

Figure 11: Performance of clMAGMA’s QR factorization in
double precision compared against MKL 11.1

Figure 12: Performance of clMAGMA’s Hessenberg factoriza-
tion in double precision compared against MKL 11.1

Figure 13: Performance of clMAGMA’s Matrix Inversion in
double precision compared against MKL 11.1

6. CONCLUSIONS AND FUTURE WORK
We have presented high performance linear algebra routines for a wide range
of linear transformations. The routines were implemented efficiently (and
tuned specifically for the AMD’s Tahiti GPUs) with the use of the OpenCL
standard and the optimized BLAS routines from the hardware vendor. Our
optimization techniques show a wide applicability and yield many-fold
performance improvement over highly tuned codes that constitute the state-
of-the-art libraries for the current generation of multicore CPUs. With the
success we achieved in porting our high performance kernels to OpenCL
implementation on GPUs, we are encouraged to look into extending our
porting efforts to the emerging platforms such as Intel Xeon Phi and ARM’s
AArch64 as well as the supported editions of multicore x86 hardware that
are targeted by the CPU-oriented implementations of OpenCL.

Porting clMAGMA to mobile or embedded computing platforms is also of
interest. One direction relies on tuning the blocking sizes, and future work
is on developing autotuning mechanisms/software that will use empirical
measurement at installation time to automatically tune the library. Another



direction is to develop implementations that run entirely on the GPU, and
thus avoid possible “host” memory restrictions such as size limitations and
non-uniform time to access.
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