
Accelerating Tensor Contractions for High-Order FEM on CPUs, GPUs, and KNLs
Azzam Haidar, Ahmad Abdelfattah, Veselin Dobrev, Ian Karlin, Tzanio Kolev, Stanimire Tomov, and Jack Dongarra

Abstract
High-performance is difficult to obtain using existing libraries, especially for many independent
computations where each computation is very small. However, using our framework to batch computation
plus application-specifics, we demonstrate close to peak performance results. In particular, to accelerate
large scale tensor-formulated high-order finite element method (FEM) simulations, which is the main focus
and motivation for this work, we represent contractions as tensor index reordering plus matrix-matrix
multiplications (GEMMs). This is a key factor to achieve algorithmically many-fold acceleration (vs. not
using it) due to possible reuse of data loaded in fast memory.

Motivation
Numerous important applications can be expressed through tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

Accelerating High-order FEM

Code Autogeneration and Kernel Design

Methodology, Design, and Optimization CPU, PHI
We conducted an extensive study over the performance counters using the PAPI tools to conclude that in
order to achieve an efficient execution, we need to maximize the occupancy and minimize the data traffic
while respecting the underlying hierarchical memory design. Unfortunately, today's compilers cannot
introduce highly sophisticated cache/register based loop transformations [4].

● Data Access Optimizations and Loop Transformation Techniques
we propose to order the iterations of the nested loops in such a way that we increase locality and
expose more parallelism for vectorization. Hence, loop unrolling, loop peeling, and loop interchange can
be useful techniques. we propose to unroll the two inner-most loops so that the accesses to matrix B
are independent from the loop order, which also allows us to reorder the computations for continuous
access and improved vectorization. This technique enables us to prefetch and hold some of the data of
B into the SIMD registers.

● Register Data Reuse and Locality
We focus on register blocking to increase the performance. Our study concludes that the register reuse
ends up being the key factor for performance. The idea is that when data is loaded into SIMD register, it
will be reused as much as possible before its replacement by new data. The amount of data that can be
kept into registers becomes an important tuning parameter. This reduces the number of load, store, and
total instructions from O(n2) to O(n), compared to a classical ijk or ikj implementation as depicted in
figures.

● Effect of the Multi-threading
Operating on matrices of very small sizes is memory-bound computation and thus, increasing the
number of CPU cores may not always increase the performance since the performance will be limited
by the bandwidth which can be saturated by a few cores. We performed a set of experiments towards
clarifying this behavior and illustrate our findings in figures. As shown, the notion of perfect speed-up
does not exist for a memory-bound algorithm, and adding more cores increases the performance
slightly.

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear algebra kernels, and BLAST from LLNL

Gatlinburg, Tennessee, Aug 30- Sept 1, 2016
http://computing.ornl.gov/workshops/SMC16/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. LLNL release number LLNL-POST-701583
ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of
Energy, and NVIDIA.

REFERENCES: [1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641.
 [2] A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, S. Tomov, High-Performance Tensor Contractions for GPUs, ICCS'16, San Diego, CA, June 2016.
 [3] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, Performance, Design, and Autotuning of Batched GEMM for GPUs, ISC High Performance 2016, Frankfurt, Germany, June 2016.

 [4] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, J. Dongarra High-performance matrix-matrix multiplications of very small matrices, Euro-Par 2016, Grenoble, France, August 22-26, 2016.

Methodology, Design, and Optimization GPU
We use a hierarchical blocking model of both communications and computations. We designed CUDA C++
templates to enable unified code base for all the small sizes [2,3,4].

● A Cache-based Rocache Approach
Unlike multi-core CPUs, the L1 cache (per SM) is not intended for global memory accesses, which are
cached only in the L2. The L2 cache is shared among all SMs, which makes it difficult to use
cache-based optimizations. However, a modern Kepler GPU has a 48 KB per SM of a read-only cache
(rocache), which can be used for global memory reads. A possible implementation, is to read the
matrices A and B through the read-only cache.

● A Shared Memory based Approach
Another approach is to use shared memory for data reuse rather than rocache. We refer to this
implementation as the MAGMA kernel. We performed an extensive set of auto-tuning and performance
counter analysis to optimize and improve this implementation. The matrices A and B are loaded by
block into the shared memory, and the corresponding block of the matrix C is held into registers.
Prefetching can also be used to load the next blocks of A and B and is controlled by a tunable
parameter.

● Analysis of Hardware Counters
We performed a detailed performance study based on the collection and analysis of hardware counters.
Counter readings were taken using performance tools (Nvidia's CUPTI and PAPI CUDA component). We
added the sizes M, N, K to the template parameters such a way to use a unified code base to produce a
fully unrolled and optimized implementation for any of these very small sizes.

● Expressed in terms of tensor
contractions [2];

● Contractions can be implemented
as sequence of pairwise
contractions (slow);

● Code-generation, index-reordering,
and auto-tuning are used to cast
computations as Batched GEMMs:

 is transformed autom. to

 Cd1x(d2,d3)= AT Bd1x(d2,d3)

GP

U
 X

eo
n

PH
I /

 m
ul

tic
or

e
CP

U

