
This space is reserved for the Procedia header, do not use it

High-Performance Tensor Contractions for GPUs

A. Abdelfattah1, M. Baboulin2, V. Dobrev3, J. Dongarra1,4, C. Earl3,
J. Falcou2, A. Haidar1, I. Karlin3, Tz. Kolev3, I. Masliah2, and S. Tomov1

1 Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
2 University of Paris-Sud and Inria, France

3 Lawrence Livermore National Laboratory, Livermore, CA, USA
4 University of Manchester, Manchester, UK

Abstract
We present a computational framework for high-performance tensor contractions on GPUs.
High-performance is difficult to obtain using existing libraries, especially for many independent
contractions where each contraction is very small, e.g., sub-vector/warp in size. However, using
our framework to batch contractions plus application-specifics, we demonstrate close to peak
performance results. In particular, to accelerate large scale tensor-formulated high-order finite
element method (FEM) simulations, which is the main focus and motivation for this work, we
represent contractions as tensor index reordering plus matrix-matrix multiplications (GEMMs).
This is a key factor to achieve algorithmically many-fold acceleration (vs. not using it) due to
possible reuse of data loaded in fast memory. In addition to using this context knowledge, we
design tensor data-structures, tensor algebra interfaces, and new tensor contraction algorithms
and implementations to achieve 90+% of a theoretically derived peak on GPUs. On a K40c
GPU for contractions resulting in GEMMs on square matrices of size 8 for example, we are
2.8× faster than CUBLAS, and 8.5× faster than MKL on 16 cores of Intel Xeon ES-2670
(Sandy Bridge) 2.60GHz CPUs. Finally, we apply autotuning and code generation techniques
to simplify tuning and provide an architecture-aware, user-friendly interface.

Keywords: Tensor contractions, Tensor HPC, GPU, Batched linear algebra, FEM, Applications

1 Introduction

The development of high-performance tensor algebra is important due to tensors’ frequent use
in physics and engineering, where tensors provide a foundational mathematical tool for brief,
yet comprehensive, formulations and solutions of problems in areas such as elasticity, fluid me-
chanics, multi-physics, quantum chemistry, general relativity, and many others [10]. Advances
in microprocessors and storage technologies have made it feasible to target higher dimension
and accuracy computational approaches (e.g., “ab initio”-type) that model mutilinear relations,
e.g., in recent areas of high interest like big-data analytics and machine learning; that can also
be formulated through tensors. At the same time, to enable these applications to efficiently

1

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

use tensor computations on current hardware, and in particular GPUs, a number of research
challenges must be addressed, including advances in the development of scalable, tensor-based
algorithms, autotuning, and code generation techniques, that are targets of this paper, towards
setting the foundations for a high-performance tensor algebra library for accelerators [3].

Tensors are multi-dimensional arrays that can be used to describe physical properties featur-
ing multilinear relations. Well known mathematical objects like scalars, vectors, and matrices
can be generalized to tensors that are of order zero, one, and two, respectively. Also, tensor
transformations like flattening of a tensor to matrices or reshaping of matrices into tensors,
can be used to link tensor computations to the developments in high-performance numerical
linear algebra (LA). Therefore, similar to many applications, tensor computations can also sig-
nificantly benefit from representing their computations in terms of BLAS, as well as from other
dense LA algorithms and techniques for multicore and GPU architectures. While a comprehen-
sive LAPACK-style initiative to tensors may be still far away [1], this work concentrates on the
development of tensor contractions – a building block for tensor computations – through lever-
aging the current LA developments for GPU and multi-core architectures in libraries like BLAS
and MAGMA, and more specifically the MAGMA Batched computational framework [6, 8, 9].

Microprocessor and storage technology advances have significantly influenced the design of
high-performance numerical algorithms and libraries over the years. While humans perceive
well algorithms expressed in terms of scalar computations (tensors of order zero), advances
towards vector machines in the 70’s lead to the development of the LINPACK library to use
vector operations (or 1st-order tensors), which was redesigned for performance into LAPACK
in the 80’s to better use cache-based machines through matrix-matrix operations (2nd-order
tensors). Operations on higher-dimensional data were added in the 90’s for distributed-memory
systems, where ScaLAPACK was designed for 2D-block cyclic matrix distributions. For the
emerging in the 00’s multicore architectures, the PLASMA library introduced tiled algorithms
and tiled data layouts (4th-order tensors; see Figure 1). In the 2010’s, the MAGMA libraries
were designed for heterogeneous architectures, including current investigations on new data
layouts, functionalities, batched computations, and possibly generalizations to tensors, in order
to provide applications new functionalities to deal efficiently with multi-dimensional data.

n

. i
j

Ai,j,m,n

m

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7
Matrix A in tiled data-layout

as a 4th-order tensor:

// Declare a 4th-order Tensor A on the GPU ︎
Tensor<64, 64, 9, 8, gpu_t> A; ︎

// DSEL design using Einstein notation: repeated  
// index k means a summation/contraction. ︎
// Range of the other indices is full/range as︎
// given through the left assignment operand ︎
A(i, j, m:1..8, n:1..7) -= A(i, k,m,0) * A(k, j,0,n); ︎

A rank-64 update as tensor contraction on index k
(for i = 0..63 for j = 0..63 for m = 1..8 for n = 1..7):

i, j,m,nA − = i,k,m,0A k, j,0,nA
k
∑

Tensor contractions in machine learning (Convolutional Neural Networks in computer vision)

Filters F
Fn

 Output On

n,kO

n,kO = k,iD
i
∑ n,iF

Dk .

Convolution Pooling Convolution Pooling Fully Output
 connected predictions Data D

Convolution of Filters Fi (feature detection) and input image D:
•  For every filter Fn and every channel, the computation for

every pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed into

a batched GEMM (for efficiency; among other approaches)

chicken 0.4

boat 0.3
person 0.1

dog 0.01

Figure 1: Left: Example of a 4th-order tensor resulting from tile matrix layout used in dense
LA, a tensor contraction, and a possible tensor contractions design using Einstein summation
notation and a Domain Specific Embedded Language (or DSEL) . Right: Illustration of tensor
contractions needed and viable approaches to solve them in machine learning.

Figure 1 Left illustrates the notion of tensor and tensor contraction in DLA, as well as one
of our tensor contraction design using a DSEL . Figure 1 Right illustrates the need of tensor
contractions in machine learning. The computational characteristics in this case are common
to many applications: the operations of interest are in general small, they must be batched for

2

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

efficiency, and various transformations may have to be explored to transform the batched small
computations to regular and therefore efficient to implement operations, e.g., GEMM.

The DOE aims to deploy by 2018 three platforms exceeding 150 petaflop peak performance.
Two of the systems (named Summit and Sierra, designated for ORNL and LLNL, respectively)
will follow the hybrid computing model by coupling powerful latency-optimized processors (IBM
Power9) with highly parallel throughput-optimized accelerators (NVIDIA Volta GPUs) through
NVIDIA NVLink interconnect. The platforms will also benefit from 3D-stacked memories. The
challenges are severe to prepare libraries for these systems. The efforts must be multidisci-
plinary, incorporating LA, languages, code generations and optimizations, domain science and
application-specific numerical algorithms. Of particular interest is BLAST, a high-order FEM
hydrodynamics research code currently developed at LLNL. Compared to low-order methods,
BLAST improves the accuracy of Arbitrary Lagrangian-Eulerian (ALE) hydrodynamic simu-
lations and provides a viable path to extreme parallel computing and exascale architectures.
A core requirement to enable this path however is the development of advanced methods and
software for tensor contractions, as introduced, on GPU and multi-core architectures.

2 Tensors in numerical libraries

The use of tensors in physics and engineering applications has motivated an extensive research
in both algorithms for tensor algebra and computational aspects for tensor-based simulations.
See the survey [10], and the references cited there, for an overview of the linear algebra aspects of
tensors research, including higher-order tensor decompositions, their applications, and available
software. A general overview with current and future direction in tensor research is presented
in the Future directions in tensor-based computation and modeling workshop report [1].

There has been a number of software packages developed for tensors. Some are designed
to be used through numerical computing mathematical environments like the Tensor Toolbox1

for Matlab, GRTensor II2 for Maple, or Ricci3 for Mathematica, and therefore do not target
accelerators, and high-performance computing in general. A few are specialized for particular
applications, most notably for quantum chemical computations. For example, [12] presents
early work on using accelerators to accelerate tensor contractions on GPUs. The approach
uses code generation techniques and is incorporated in the NW Chem computational chemistry
suite. More recent work [14] also uses code generation techniques and autotuning (with a system
called Baracuda, based on CUDA-CHiLL and a high-level module Optimizing Compiler with
Tensor OPeration Intelligence (OCTOPI)) to report significant acceleration compared to NW
Chem on particular tensor contractions.

While we use code generation and authotuning, our approach also relies on context knowl-
edge, and in particular that tensor reshaping techniques can often transform tensor contractions
from many applications into many GEMMs, similar to the example on Figure 1, Right from ma-
chine learning. This transformation can not easily be detect automatically, and moreover, even
if the transformation is somehow indicated, it is well known that general GEMM optimizations
using only compiler techniques can not match in performance best-tailored solutions.

Similar to our approach but for CPU systems only, [15] executes contractions via GEMM
on a properly ordered and structured tensor. As in the other approaches in quantum chemistry,
large tensor contractions are targeted. In contrast, we target many but small contractions,
that are often sub-warp/vector in size (see next section), resulting in large-scale computations.

1http://www.sandia.gov/∼tgkolda/TensorToolbox/
2http://grtensor.phy.queensu.ca/
3http://www.math.washington.edu/∼lee/Ricci/

3

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

Tensor reshuffle operations are done to cast the contractions to GEMMs, when possible, and a
batched approach with custom-built BLAS kernels is used to efficiently execute them.

3 Tensor formulation for high-order FEM

We derive tensor formulations for the high-order FE kernels of the Lagrangian phase of BLAST,
which solves the Euler equations of compressible hydrodynamics in a moving Lagrangian
frame [5, 7]. On a semi-discrete level, the conservation laws of Lagrangian hydrodynamics
can be written as:

Momentum Conservation: MV
dv

dt
= − F · 1, (1)

Energy Conservation:
de

dt
= M−1E FT · v , (2)

Equation of Motion:
dx

dt
= v, where (3)

v, e, and x are the unknown velocity, specific internal energy, and grid position, respectively;
MV and ME are independent of time velocity and energy mass matrices; and F is the generalized
corner force matrix depending on (v, e, x) that needs to be evaluated at every time step.

To illustrate the tensor formulation of this problem, consider the finite element (FE) mass
matrix for an element (zone) E with a weight ρ, as a 2-dimensional tensor:

(ME)ij =

nq∑
k=1

αk ρ(qk)ϕi(qk)ϕj(qk) |JE(qk)| , i, j = 1, . . . , nd, where

nd is the number of degrees of freedom (dofs), nq is the number of quadrature points, {ϕi}ndi=1

are the FE basis functions on the reference element, |JE | is the determinant of the element
transformation, and {qk}nqk=1 and {αk}nqk=1 are the points and weights of the quadrature rule.

Tensors can be introduced by taking the nq × nd matrix B, Bki = ϕi(qk), and the nq × nq
diagonal matrix DE , (DE)kk = αk ρ(qk) |JE(qk)|. Then, (ME)ij =

∑nq
k=1Bki(DE)kkBkj , i.e.,

M = BTDB (omitting the element index E) .

Using FEs of order p with a quadrature rule of order p, we have nd = O(pd) and nq = O(pd),
so B is a dense O(pd) × O(pd) matrix. If the FE basis and the quadrature rule have tensor
product structure, then in 2D,

Mi1,i2,j1,j2 =
∑
k1,k2

(B1d
k1,i1B

1d
k1,j1)(B1d

k2,i2B
1d
k2,j2)Dk1,k2 , (4)

where B1d is a dense O(p)×O(p) matrix and D is a dense O(p)×O(p) matrix. In 3D,

Mi1,i2,i3,j1,j2,j3 =
∑

k1,k2,k3

(B1d
k1,i1B

1d
k1,j1)(B1d

k2,i2B
1d
k2,j2)(B1d

k3,i3B
1d
k3,j3)Dk1,k2,k3

, where (5)

D is a dense O(p)×O(p)×O(p) tensor, and i = (i1, · · · , id), j = (j1, · · · , jd), k = (k1, · · · , kd)
are the decompositions of the dof and quadrature point indices into the tensor components
along logical coordinate axes. Note that if we store the tensors as column-wise 1D arrays, then

Mnd1×nd2×nd1×nd2
i1,i2,j1,j2

= Mnd×nd
i,j = Mnd2

i+nd j = Mnd2

i1+nd1i2+nd(j1+nd1j2)
,

4

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

i.e. we can reinterpret M as a nd × nd matrix, or a fourth order tensor of dimensions nd1 ×
nd2 × nd1 × nd2, or a vector of dimension nd2, without changing the underlying storage.

The action of the operator, U = MV , can be written in the tensor product case as

Ui1,i2 =
∑

k1,k2,j1,j2

B1d
k1,i1B

1d
k2,i2Dk1,k2

B1d
k1,j1B

1d
k2,j2Vj1,j2 , and (6)

Ui1,i2,i3 =
∑

k1,k2,k3,j1,j2,j3

B1d
k1,i1B

1d
k2,i2B

1d
k3,i3Dk1,k2,k3

B1d
k1,j1B

1d
k2,j2B

1d
k3 ,j3Vj1,j2,j3 . (7)

Given B1d, D, and V , tensors M and U must be computed based on the generalized con-
tractions (4)–(7). The matrix sizes are relatively small, e.g., with p = 2..8 and d = 2 or 3.

4 Tensor contraction interfaces and code generation

To develop high-quality HPC software for tensor contractions, we impose the following three
main requirements on our interface design:

Convenience of use: Interfaces of HPC libraries are extremely important for the libraries’
adoption by the community. Interfaces must provide convenience and practicality of use,
including ease of interoperability between libraries. Ideally, a tensor data type standard
must be defined. The standard for a dense matrix is a pointer, sizes, leading dimension,
and assumption for column-major data layout, e.g., as in BLAS and LAPACK. For ten-
sors, motivated by reviewing interfaces in available libraries and the success of BLAS,
we propose to represent a tensor by its dimensions and a data layout abstraction. The
abstraction is to provide a choice of predefined layouts, and ways to switch it, or to easily
add user-specified layouts, without changing the underlying algorithms. In general, a
specific layout provides the formula of mapping the multi-dimensional tensor to the mem-
ory, e.g., a second order tensor can be stored as a column-major matrix A with leading
dimension lda, in which case the abstraction maps Ai,j to A[i+ j ∗ lda] (see Listing 1).

Readability: Numerical software must be understandable, which is needed for ease of main-
tenance, as well as code optimizations, and testing. While we can easily implement any
interface, e.g., even expressing the interface and tensor APIs in a DSEL if needed (plus
code generation techniques to translate the DSEL to a standard language; see the ex-
ample in Einstein tensor notations on Figure 1 Left), we determined that it is better to
provide implementations relying on a standard language and the code generation features
provided within the language. The C++11/14 standard for example is expressive enough
to allow us to implement readable and easy to use interfaces.

Performance: While we expect to obtain high performance mostly through algorithmic design
and autotuning (see Section 5), we do not want to compromise on optimization opportu-
nities like removing parameters checking and loop unrolling to eliminate jumps and loop
count decrements. These optimizations are essential especially for the small computations
that we target. Therefore, in our design we consider the use of compiler features related
to code generation (e.g., templates, etc.), as further discussed below.

Related to performance, a lost optimization opportunity is if static checking and compile
time information is not provided as part of the scientific libraries used. As an example, LA-
PACK routines start by checking entry parameters dynamically, which results in extra time for

5

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

small size computations. The type of algorithms that we intend to use, e.g., as the MAGMA
Batched algorithms, also require specific tuning [8] as performance will greatly vary depending
on numerous parameters. To avoid these performance drawbacks, and also benefit from opti-
mization techniques like compiler loop unrolling for static dimension problems, we use features
of the new C++11/14 standard. In particular, the constexpr specifier enables to evaluate the
value of a function or variable at compile time. We use this feature with integral constants and
template specialization to design our tensor dimensions layout:

// Template s p e c i a l i z a t i o n
constexpr auto layout = o f s i z e <5,3>() ;
// Using I n t e g r a l constant
constexpr auto layout1 = o f s i z e (5 c , 3 c) ;
// Using dynamic dimensions
constexpr auto layout2 = o f s i z e (5 ,3) ;
// Access Dimensions at compile time
constexpr auto dim1 = layout (1) ;

Listing 1: Dimensions for Tensors

// Create a rank 2 tensor o f s i z e 5 ,3 on GPU
constexpr tensor<f l o a t , gpu > d t s (o f s i z e <5,3>()) ;
// Create a rank 2 tensor o f s i z e 5 ,3 on CPU
constexpr tensor<f l o a t> t s (o f s i z e <5,3>()) ;
// Use thrus t to f i l l d t s with 9
thrus t : : f i l l (d t s . begin () , d t s . end () , 9) ;
// Copy d t s from GPU to t s on CPU
copy (d t s , t s) ;

Listing 2: Create Tensor and copy

As seen in Listing 1, we propose 3 ways to specify dimensions using the function of size
which returns a layout containing the static or dynamic dimension. Each operator inside the
layout uses the constexpr keyword which enables us to return sizes at compile time if possible.

We can then freely extract the dimensions (Listing 1) and use them to specify our CPU
and GPU kernels at compile time. Our tensor model is based on our layout, the data type of
the tensor and its locality. The memory buffer is based on vector from the Standard Template
Library for CPU and thrust [4] for GPU. To generate a tensor, we need to pass a data type
and locality as template parameter and the size to the constructor (Listing 2).

Transfers between CPU and GPU tensors can be expressed through the function copy (List-
ing 2). This function will use the stream 0 by default but a stream can be passed for asyn-
chronous copy. We have designed two models for batched computing (Listing 3). The first
one is based on allocating a single memory block for all tensors to improve data transfers and
locality while the other is a group of same size tensors.

// Create a batch that w i l l conta in 15 t en so r s o f s i z e 5 ,3 ,6
constexpr auto batch<f l o a t , gpu > b = make batch (o f s i z e (5 c , 3 c , 6 c) , 15) ;
// Access ing a tensor from the batch re turns a view on i t
constexpr auto view b = b (0) ;
// Create a grouping o f t en so r s o f same s i z e t en so r s
constexpr auto group<f l o a t , gpu > g (o f s i z e (5 c , 3 c)) ;
// Add a tensor to the group
constexpr auto tensor<f l o a t , gpu > d t s (o f s i z e (5 c , 3 c)) ;
g . push back (d t s) ;

Listing 3: Batched tensors

Once we have defined these functions we can call the kernel to compute a batched dgemm
on tensors of dimension 2.

constexpr auto batch<f l o a t , gpu > b = make batch (o f s i z e (5 c , 3 c) , 15) ;
constexpr auto batch<f l o a t , gpu > b1 = make batch (o f s i z e (5 c , 3 c) , 15) ;
// Product o f two tensor batched o f dimension 2 f o r matrix product us ing C++ operator
constexpr auto c = b ∗ b1 ;
// Product us ing the batch dgemm funct i on that can be s p e c i a l i z e d depending on parameters
constexpr auto c = batch gemm(b , b1) ;

Listing 4: Tensor Operations

5 Algorithms design for performance and portability

The generalized tensor contractions (4)–(7) can be summarized to a few kernels [3]. One natural
way to implement them is as a sequence of pairwise contractions, i.e. by evaluating the sums
one at a time. While this is an efficient approach, especially when coupled with a batched

6

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

approach as in MAGMA [8, 9], there is enough complexity here that maybe one can come up
with something better. Indeed, a number of the kernels needed can be reduced further to a
tensor index reordering (generalized transpose) plus the dgemm A,B 7→ ATB. This is because
contraction by the first index, for example

Ci1,i2,i3 =
∑
k1

Ak1,i1Bk1,i2,i3 ,

can be written as Reshape(C)nd1×(nd2nd3) = AT Reshape(B)nq1×(nd2nd3). If the contraction is
not by the first index, reducing it to ATB requires data reordering. However, we note that there
is a way not to do this explicitly since the matrices are very small; we organize our algorithms
(next) to have a phase of reading A and B to shared memory, followed by a computational
phase. Thus, the reading can be from consecutive or not data, and in either case to benefit
from data reuse (of the small A and B in shared memory) using the same computational phase.

In summary, all of the (6)–(7) operations can be implemented through reshaping and the ker-
nels Ai,j,k,l =

∑
sBi,s,jCk,s,l and Ai,k,l,j =

∑
sBi,s,jCk,s,l. The matrix assembly contractions

(4)–(5) can also be reduced to a common kernel (plus reshaping): Ak,i,l,j =
∑

sBs,iBs,jCk,s,l.

5.1 Performance model

To evaluate the efficiency of our algorithms we derive theoretical bounds for the maximum
achievable performance Pmax = F/Tmin, where F is the flops needed and Tmin is the fastest
time to solution. For simplicity, consider C = αAB + βC on square matrices of size n. We
have F ≈ 2n3 and Tmin = minT (TRead(A,B,C) + TCompute(C) + TWrite(C)). Note that we have
to read/write 4n2 elements, or 32n2 Bytes for double precision (DP) calculations. Thus, if the
maximum achievable bandwidth is B (in Bytes/second), we take Tmin = 4n2/B in DP. Note
that this time is theoretically achievable if the computation totally overlaps the data transfers
and does not disrupt the maximum rate B of read/write to the GPU memory. Thus,

Pmax =
2n3B

32n2
=
nB

16
in DP.

The achievable bandwidth can be obtained by benchmarks, e.g., using NVIDIA’s bandwidthTest.
For example, on a K40 GPU with ECC on the peak is 180 GB/s, so in that case Pmax is 11.25 n
GFlop/s (denoted by the dashed line on Figure 3). Thus, when n = 16 for example, we expect
a theoretical maximum performance of 180 GFlop/s in DP.

5.2 Algorithms for tensor contractions through batched GEMMs

As described, we transform the tensor contractions to batched GEMM. To achieve HP on
batched GEMM for small matrices that are sub-warp in size, we apply the following techniques:

• Using templates and constexpr specifiers we manage to avoid parameters checking and
get compiler-unrolled loops in our kernels;

• We avoid passing arrays of pointers to the batched matrices, which are quite large, by
passing them through formula/function that is part of the tensor’s structure definition;

• The kernels are organized as follows: (1) Read A and B into shared memory; (2) Com-
pute AB in registers; (3) Update C. Reading A, B, and C is through functions in the
tensor’s structure definition, which allows us to work with matrices that are not stored

7

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

in the standard matrix format. Thus, we do not need explicit data reordering for some
contractions, in order to efficiently benefit from the GEMM computation (step 2 above);

• We developed versions based on: how A and B are read; prefetching or not C by inter-
mixing reading C with the computation in (2); number of matrices handled by a thread
block, combined with prefetching variations for A and B; number of threads per thread
block; and combinations of the above.

In all cases, to maximize data reuse, a single GEMM is done on a single thread block. Batching
of the computation is done as in [9]. A GPU GEMMs technique, used for large matrices since
the Fermi architecture [13], is to apply hierarchical communications/blocking on all memory
levels, including a new register blocking. Register blocking can be added by making a single
thread compute more than one element of a resulting matrix (in the same row or column, so
that when an element from A or B is loaded into a register, it gets used more than once).
Current results show that register blocking may not be needed in this case.

5.3 Autotuning

The complexity of tuning our algorithms is handled through authotuning [11, 2]. We note that
although tuning is important, the algorithmic design (as in Section 5.2) is the more critical part
for obtaining high-performance, as the overall success is limited by the quality of the algorithms
used. With that in mind, there are generally two kinds of approaches for doing autotuning –
model-driven optimization and empirical optimization. We use a combination. The model-
driven part comprises compiler code generation and optimizations (as in Section 4). For the
empirical optimization, a large number of parametrized code variants are generated and run
on a given platform to discover the one that gives the best performance. The effectiveness of
empirical optimization depends on the chosen parameters to optimize, and the search heuristic
used. The algorithm designs and implementations using templates are very convenient in setting
up our autotuning framework. The process is illustrated on Figure 2.

1) Kernel variants: performance parameters are exposed through a templated kernel interface
 template< typename T, int DIM_X, int DIM_Y,
 int BLK_M, int BLK_N, int BLK_K,
 int DIM_XA, int DIM_YA, int DIM_XB, int DIM_YB,
 int THR_M, int THR_N, int CONJA, int CONJB >
 static __device__ void tensor_template_device_gemm_nn(int M, int N, int K, …

2) CPU interfaces that call the GPU kernels as a Batched computation
 template<typename T, int DIM_X, int DIM_Y, … >
 void tensor_template_batched_gemm_nn(int m, int n, int k, …) {
 …
 tensor_template_device_gemm _nn<T, DIM_X, DIM_Y, … ><<<dimGrid, dimBlock, 0, queue>>>(m, n, k,…);
 }

3) Python scripts that generate the search space for the
 parameters DIM_X, DIM_Y …
 index, DIM_X, DIM_Y, …
 #define NN_V_0 4, 8, 8, 24, 8, 1, 4, 8, 4, 8
 #define NN_V_1 4, 8, 8, 32, 8, 1, 4, 8, 4, 8
 #define NN_V_2 4, 8, 8, 40, 8, 1, 4, 8, 4, 8
 …

4) Scripts that run all versions in the search space, analyze the
 results, and return the best combination of parameters, which
 is stored in the library for subsequent use.

Figure 2: Autotuning framework for high-performance tensor contractions in MAGMA.

6 Experiments on tensor computations

Figure 3 shows the DP performance of four of our autotuned kernels from Section 5.2. Each
of the kernels gives best results for certain dimensions. Shown is also the performance on 16
cores Intel Sandy Bridge CPUs. The implementation uses OpenMP to run in parallel a GEMM
per thread, where the GEMMs call MKL. For n = 16 the speedup is about 4× and grows for
smaller sizes. Similar trend is observed in a comparison to the batched DGEMM in CUBLAS.
Our performance is within 90% of the theoretical maximum, as derived in Section 5.1, and

8

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

��

���

���

���

���

����

����

����

����

����

����

�� �� �� �� �� ��� ��� ��� ���

�
�
�
�
��

���������������

������������
����������
����������
����������
����������
�������
����������

Figure 3: Performance comparison of tensor contraction versions using batched C = αAB+βC
on 100,000 square matrices of size n (x-axis) on a K40c GPU and 16 cores of Intel Xeon ES-2670
(Sandy Bridge) 2.60 GHz CPUs.

denoted by a dashed line. Slight improvement may be possible through register blocking and
tuning.

7 Conclusions and future directions

Numerical simulations in many applications require the analysis of data that is increasing in
dimension. The use of standard numerical libraries, typically based on BLAS, is becoming
inadequate in these cases, while tensors can provide a well-fit mathematical tool for their brief
and comprehensive formulations and solutions. We presented a tensors approach to high-order
FEM and showed it as a multidisciplinary effort – starting from a tensor formulation of the
numerical algorithms of a domain science problem, to tensor interfaces and code generation, to
algorithms design and tuning for performance and portability. We developed an approach and
a proof-of-concept software for it, showing that it has the potential to get optimal performance.
We currently achieve within 90% of a theoretically derived peak on GPUs, using on-the-fly
tensor reshaping to cast tensor contractions to small but many GEMMs, executed using a
batched computing approach, custom-built GEMM kernels for small matrices, and autotuning.

As future work, there are many options that need to be coded and tuned. The resulting HP
tensor contractions package will be released as open source through the MAGMA library. It
remains to integrate the developments in the BLAST code, and complete the autotuning in an-
ticipation for easy portability to future supercomputers like Sierra, and new GPU architectures
like the Volta with its 3D-stacked memory, expected to further favor tensor computations.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grants
No. CSR 1514286 and ACI-1339822, NVIDIA, the Department of Energy, and in part by the
Russian Scientific Foundation, Agreement N14-11-00190. This work was further performed un-
der the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. LLNL release number LLNL-CONF-681073-DRAFT.

9

Tensors Abdelfattah, Baboulin, Dobrev, Dongarra, Earl, Falcou, Haidar, Karlin, Kolev, Masliah, and Tomov

References

[1] Future directions in tensor-based computation and modeling, May 2009. Workshop. Arlington,
Virginia. Technical report published at http://www.cs.cornell.edu/CV/TenWork/FinalReport.pdf.

[2] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Performance, Design,
and Autotuning of Batched GEMM for GPUs. Available as University of Tennessee Innovative
Computing Laboratory Technical Report, December, 2015.

[3] M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev,
I. Masliah, and S. Tomov. Towards a high-performance tensor algebra package for accelerators.
http://computing.ornl.gov/workshops/SMC15/presentations/. Smoky Mountains Computational
Sciences and Engineering Conference (SMC’15), Gatlinburg, TN, Sep 2015.

[4] N. Bell and J. Hoberock. Thrust: A 2 6. GPU Computing Gems Jade Edition, page 359, 2011.

[5] Veselin Dobrev, Tzanio V. Kolev, and Robert N. Rieben. High-order curvilinear finite element
methods for lagrangian hydrodynamics. SIAM J. Scientific Computing, 34(5), 2012.

[6] T. Dong, A. Haidar, P. Luszczek, A. Harris, S. Tomov, and J. Dongarra. LU Factorization of
Small Matrices: Accelerating Batched DGETRF on the GPU. In HPCC 2014, August 2014.

[7] Tingxing Dong, Veselin Dobrev, Tzanio Kolev, Robert Rieben, Stanimire Tomov, and Jack Don-
garra. A step towards energy efficient computing: Redesigning a hydrodynamic application on
CPU-GPU. In IEEE 28th International Parallel Distributed Processing Symposium (IPDPS), 2014.

[8] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra.
Batched matrix computations on hardware accelerators based on GPUs. IJHPCA,
doi:10.1177/1094342014567546, 02/2015.

[9] Azzam Haidar, Tingxing Dong, Stanimire Tomov, Piotr Luszczek, and Jack Dongarra. A Frame-
work for Batched and GPU-Resident Factorization Algorithms Applied to Block Householder
Transformations. In High Performance Computing, volume 9137 of Lecture Notes in Computer
Science, pages 31–47. 2015.

[10] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Rev.,
51(3):455–500, August 2009.

[11] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning GEMM for GPUs. In Proceedings of
the 2009 International Conference on Computational Science, ICCS’09, Baton Roube, LA, May
25-27 2009. Springer.

[12] Wenjing Ma, S. Krishnamoorthy, O. Villay, and K. Kowalski. Acceleration of Streamed Tensor
Contraction Expressions on GPGPU-Based Clusters. In Cluster Computing (CLUSTER), 2010
IEEE International Conference on, pages 207–216, Sept 2010.

[13] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An improved magma gemm for fermi graphics
processing units. Int. J. High Perform. Comput. Appl., 24(4):511–515, November 2010.

[14] Thomas Nelson, Axel Rivera, Prasanna Balaprakash, Mary Hall, Paul D. Hovland, Elizabeth
Jessup, and Boyana Norris. Generating efficient tensor contractions for gpus. Technical report,
ANL/MCS-P5361-0615, Mathematics and Computer Science, Arbonne National Laboratory, 2015.

[15] Edgar Solomonik, Devin Matthews, Jeff Hammond, John Stanton, and James Demmel. A mas-
sively parallel tensor contraction framework for coupled-cluster computations. Technical Report
UCB/EECS-2014-143, EECS Department, University of California, Berkeley, Aug 2014.

10

	Introduction
	Tensors in numerical libraries
	Tensor formulation for high-order FEM
	Tensor contraction interfaces and code generation
	Algorithms design for performance and portability
	Performance model
	Algorithms for tensor contractions through batched GEMMs
	Autotuning

	Experiments on tensor computations
	Conclusions and future directions

