
Flexible Batched Sparse Matrix-Vector Product on GPUs

Hartwig Anzt
Karlsruhe Institute of Technology,

Germany
University of Tennessee, Knoxville,

USA
hartwig.anzt@kit.edu

Gary Collins
University of Tennessee, Knoxville,

USA
gcollin7@vols.utk.edu

Jack Dongarra
University of Tennessee, Knoxville,

USA
Oak Ridge National Laboratory, USA
University of Manchester, Manchester,

UK
dongarra@icl.utk.edu

Goran Flegar
Universidad Jaume I, Castellon, Spain

flegar@icc.uji.es

Enrique S. Quintana-Ortí
Universidad Jaume I, Castellon, Spain

quintana@icc.uji.es

ABSTRACT
We propose a variety of batched routines for concurrently pro-
cessing a large collection of small-size, independent sparse matrix-
vector products (SpMV) on graphics processing units (GPUs). These
batched SpMV kernels are designed to be flexible in order to handle
a batch of matrices which differ in size, nonzero count, and nonzero
distribution. Furthermore, they support three most commonly used
sparse storage formats: CSR, COO and ELL. Our experimental re-
sults on a state-of-the-art GPU reveal performance improvements
of up to 25× compared to non-batched SpMV routines.

CCS CONCEPTS
• Mathematics of computing → Mathematical software per-
formance;

KEYWORDS
Sparse matrix-vector product, batched routines, GPUs.
ACM Reference Format:
HartwigAnzt, Gary Collins, JackDongarra, Goran Flegar, and Enrique S. Quintana-
Ortí. 2017. Flexible Batched Sparse Matrix-Vector Product on GPUs. In
Proceedings of ScalA17: 8th Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems (ScalA17). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3148226.3148230

1 INTRODUCTION
Applying an operator discretized as a sparse matrix in terms of
a sparse matrix-vector product (SpMV) is a heavily utilized kernel
in many scientific applications. A practical example are Krylov
subspace methods, which rely on SpMV to generate the Krylov sub-
spaces used to approximate the solution of linear systems and
eigenvalue problems. At the same time, SpMV frequently poses a
performance bottleneck of sparse linear algebra algorithms, as this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ScalA17, November 12–17, 2017, Denver, CO, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5125-6/17/11. . . $15.00
https://doi.org/10.1145/3148226.3148230

memory-bounded operation is notorious for delivering low frac-
tions of peak performance on current computer architectures. Given
the importance of SpMV, significant effort has been spent on find-
ing the best strategy to store sparse matrices and optimizing this
kernel for distinct nonzero distributions and hardware architec-
tures, including multicore processors and graphics processing units
(GPUs).

In general, scientific applications require the multiplication of a
single, large and sparse matrix with an input vector. In this paper,
we address a different scenario composed of the multiplication of a
large set of “small” sparse matrices with their corresponding vectors.
Although this use case is less prominent, it occurs for example
in the context of astrophysics simulations. Our goal is to make
the community aware that, under these circumstances, replacing
a standard routine with a “batched” SpMV kernel often results in
significant performance improvements. Following a brief discussion
of related work in Section 2, Section 3 presents different strategies
for processing a batch of SpMV calls/sparse matrices on GPUs via a
number of flexible routines that are designed to handle the most
commonly-used sparse matrix storage formats. In Section 4 we
then assess the performance of the new kernels, by comparing them
against the standard implementations of SpMV in cuSPARSE [13] and
MAGMA-sparse [4]. While all kernels are tested on a production
line GPU, it can be expected that the kernel design as well as the
benefits carry over to other architectures. We conclude in Section 5
with some remarks and an outlook on future research directions.

2 RELATEDWORK
2.1 SpMV on manycore architectures
Improving the performance of SpMV on modern architectures is
an active field of research. A critical factor is the selection of an
appropriate sparse matrix format, which reduces the storage cost
by maintaining only the nonzero values but has to keep some addi-
tional information in order to derive the location of the elements.

The simplest idea is to explicitly store only the nonzero elements
along with the row and column indices (i.e. coordianates) of each
element. This coordinate (COO) format [5] allows to determine the
original position of any element in the matrix without processing
any other entries.

If the elements are sorted row-wise and, for performance reasons,
in increasing column-order within each row, the storage cost can be

https://doi.org/10.1145/3148226.3148230
https://doi.org/10.1145/3148226.3148230

ScalA17, November 12–17, 2017, Denver, CO, USA H. Anzt et al.

0 1 1 1 3 0 2 3

4 9 3 3 1 0 6 5

ELL	format

colidx

values

(max row nz ·m) · sizeof(index)
(max row nz ·m) · sizeof(value)

0 2 3 5 7

0 3 1 1 2 1 3

4 1 9 3 6 3 5

CSR	format

rowptr

colidx

values

nnz · sizeof(value)

(m+ 1) · sizeof(index)
nnz · sizeof(index)

0 3 1 1 2 1 3

4 1 9 3 6 3 5

0 0 1 2 2 3 3

COO	format

rowidx

colidx

values

2 · nnz · sizeof(index)

nnz · sizeof(value)

4 0 0 1
0 9 0 0
0 3 6 0
0 3 0 5

Dense	format

m · n · sizeof(value)

Figure 1: Basic storage formats for anm × n sparse matrix with nnz nonzeros along with memory consumption.

reduced. The “Compressed Sparse Row” (CSR [5]) format replaces
the array containing the row indices with a pointer to the beginning
of the distinct rows, reducing the amount of data required to store
the row information, at the cost of additional processing necessary
to determine the row location of the elements.

While being very popular for manycore architectures in general,
the ELL format [6] is particularly suited for GPUs. In this layout, the
distinct rows are paddedwith zeros to ensure they are all of the same
length. While this typically increases the storage cost, it removes
the need to maintain the row pointers, and enables processing
the column-indices (and values) in distinct rows in SIMD fashion.
Furthermore, coalescent memory access is attained if the matrix
containing the nonzero elements is stored in column-major order.

The three basic formats targeted in our batched kernels are
illustrated in Figure 1. In addition to these basic formats, there exist
many other variants, which often arise as a combination of the
basic formats. For example, the hybrid format stores the matrix
partly in ELL and partly in CSR/COO; and the sliced ELL format
(SELL-p) [11] chops the matrix into row blocks and stores each
block in ELL format.

Related to the storage format is the question of how to parallelize
SpMV. The main challenges in this context are: 1) balancing the
workload among the distinct cores/threads; and 2) ensuring an
efficient access to the matrix entries and the vector values. The
second aspect is in particular relevant on NVIDIA GPUs where
each memory access reads 128 contiguous bytes of memory [13]. In
case of fine-grained parallelism, balancing the workload naturally
results in multiple threads computing partial sums for one row,
which requires careful synchronization when writing the result
entry back into main memory. In this paper, we exclusively focus
on (batched) SpMV implementations for GPU architectures. For a
comprehensive overview about the CUDA programming model and
its implications, see [2, 13].

2.2 Batched routines
The development of specialized routines for an operation involving
many problems of small size that are pairwise independent, and
can thus be handled simultaneously, has recently gained a lot of
attention due to their heavy application in machine learning [1].
The motivation for designing these kernels is that the amount
of hardware concurrency in manycore processors such as GPUs
often exceeds the level of parallelism exploited by conventional
routines. Consequently, handling the distinct problems in sequence
utilizes only a fraction of the hardware resources and incurs a
significant kernel launch overhead. In response to this, there are
several efforts among the high performance computing community

to standardize the interface for a batched version of the basic linear
algebra subprograms (BLAS) and more complex functionality built
on top of it [9].

3 DESIGN OF FLEXIBLE BATCHED SPMV
KERNELS FOR GPUS

3.1 Flexible batched SpMV
A batched sparse SpMV for scientific applications often comes with
some boundary conditions, which allows optimizing the kernel
for this specific setting. Examples are situations where all SpMV
operations of the batch have:

• the same system size (which, as long as the sparsity pattern
does not change too drastically, allows to use explicit zero
padding to fix the sparsity pattern);
• the same nonzero-per-row distribution (allows reuse of row
pointers/row indices);
• the same nonzero locations (allows reuse of row pointers/row
indices and column indices);
• the same values but distinct sparsity patterns (allows reuse
of the values);
• the same matrix scaled by a scalar (which allows to rewrite
the batched SpMV as a sparse matrix-matrix product and
scaling the column of the distinct vectors).

In our case, we design our flexible kernels to tackle the most gen-
eral case: the systems can differ in size, nonzero count, nonzero
distribution, and values. This solution offers greater flexibility, and
even allows to process a batch of problems coming from several
concurrently-running applications.

3.2 GPU kernel design
A central aspect in the design of the batched kernels is the opti-
mization of the access to the vectors. For this purpose we initially
read the vectors into shared memory, which significantly reduces
the cost of accessing them in the multiplication phase. As shared
memory access is limited to the thread block, it is a natural choice
to assign one thread blocks to each problem of the matrix batch.
We design the batched SpMV kernels with focus on matrices of size
up to 1,024 rows. Technically it is possible to process also larger
systems, but targeting batches containing small matrices makes
this a reasonable design choice.

In this paper we implement and compare six kernels for pro-
cessing a batch of multiple SpMVs, with matrices stored in either
CSR, COO or ELL format. While the properties of the COO and
ELL formats inherently result in balanced workload distributions

Flexible Batched Sparse Matrix-Vector Product on GPUs ScalA17, November 12–17, 2017, Denver, CO, USA

for each problem, we consider four implementations for the CSR
format that use different strategies to balance the work.

Currently, all implementations use one CUDA thread block per
problem. Thus, the same amount of resources, in terms of shared
memory and number of threads, is allocated to each problem in
the batch. We recognize this can result in workload imbalance in-
between the distinct problems. However, optimizing the resource
allocation to the characteristics of the distinct matrices in the batch
remains outside the scope of this work.

3.3 COO
The first listing in Figure 2 (routine SpMV_COO) offers a sequential
implementation of the SpMV kernel based on COO. The natural
approach to exploit hardware concurrency in this case is to par-
allelize the loop traversing the nonzero elements in the matrix
(line 2 in the code). This strategy comes with two advantages: 1)
the data access to the matrix is coalescent; and 2) the workload
is perfectly balanced. The disadvantage is that multiple threads
may be assigned to elements located in the same row, and careful
synchronization is necessary to ensure the partial sums are handled
correctly. In order to ensure correct synchronization, in our batched
implementation we combine atomic operations with thread-local
partial sums. Moreover, each thread, typically handling multiple
elements located in the same row, does not write its partial sum
to global memory until all elements of the row are processed. In
addition, intra-warp atomic collisions are avoided using warp-local
segmented scans before each write. In the remainder of the paper,
we use the abbreviation COO when referring to the flexible batched
SpMV routine based on COO.

3.4 CSR
A simple parallelization of SpMV based on CSR is obtained by map-
ping the distinct rows to different threads. This corresponds to
parallelizing the outer for-loop in the second listing in Figure 2
(SpMV_CSR). This variant was first described for GPUs in [6], under
the name CSR-scalar. Even though CSR-scalar does not require any
synchronization, it typically suffers from noncoalescent memory
accesses for matrices containing more than one nonzero per row.
This flaw becomes more apparent with increasing matrix density.
Additionally, for unbalanced nonzero distributions, CSR-scalar ex-
hibits severe workload imbalance as, after processing their rows,
all threads of a warp remain idle until the thread processing the
densest row has completed its work.

To alleviate the issues with CSR-scalar, the authors of [6] pro-
posed an alternative implementation: CSR-vector, which maps each
row to one warp (group of 32 threads). This strategy removes two
drawbacks at a time: Assigning a warp to a row allows for coa-
lescent memory access; and it improves the workload balancing
for irregular sparsity patterns. However, for “very sparse” matri-
ces containing only few nonzeros per row, CSR-vector wastes a
significant amount of computational resources.

CSR-smart aims to alleviate the drawbacks of CSR-scalar and
CSR-vector while combining their strengths. This kernel, recently
implemented in the CUSP library [7], allocates a “vector” of threads
(a subset of a warp) to process each row. The number of threads
in a vector is determined at runtime. The strategy extracts the

average number of nonzeros per row from the input matrix, and
sets the vector size to the smallest power of two equal to or larger
than this number (up to 32). Although this approach may render
some workload imbalance for irregular sparsity patterns, it resolves
both the CSR-scalar’s noncoalescent memory reads as well as the
problem of idle resources in CSR-vector’s. In our batched CSR-smart
kernel we calculate the vector length for each problem individually.
This allows that thread blocks launched by the same kernel process
different matrices of the batch with different vector lengths.

For convenience, wewill use the abbreviations CSR_scal, CSR_vec
and CSR_smart to refer to the flexible batched implementations of
the CSR-scalar, CSR-vector and CSR-smart kernels, respectively.

3.5 CSR-I
A reorganization of the SpMV loops as shown in the third listing of
Figure 2 (SpMV_CSRI) can yield a perfectly balanced implementation
for the CSR format [10]. Concretely, by parallelizing the outer loop
of this variant (line 4), each warp is assigned the same percentage
of nonzero elements. This mimics COO, and makes CSR-I especially
appealing for irregular sparsity patterns (hence the “I” in the name).
However, other CSR variants can be expected to outperform CSR-
I [10] for regular sparsity patterns as the latter: 1) requires atomic
operations for synchronizing the distinct warps writing to the same
output vector location; 2) exhibits higher arithmetic intensity to
minimize the amount of atomic collisions; 3) potentially reads some
elements of the row pointer multiple times if the majority of rows
have few nonzeros; and 4) requires a preprocessing step to deter-
mine the starting value of the row variable for each warp. In the
batched CSR-I implementation (CSRI), the preprocessing step oc-
curs once for each matrix of the batch, while every invocation of
the CSRI kernel on the same matrix batch will reuse this informa-
tion. As many applications require a high number of SpMV calls,
(e.g., iterative solvers,) we do not account for the runtime of this
preprocessing step in the performance measurements in Section 4.

In the original non-batched CSR-I implementation, the optimal
level of thread concurrency is selected depending on the (single)
problem characteristics and the hardware resources. A straight-
forward approach in the batched CSR-I implementation distributes
the resources equally across the problems in the batch. However,
in the limit of increasing batch size, this strategy assigns one warp
to each problem. At the same time, the amount of shared memory
required per problem remains constant, i.e. equal to the size of the
problem. The shared memory thus becomes the factor that con-
strains the number of thread blocks which can run concurrently
on each multiprocessor of the GPU. Therefore, to prevent low oc-
cupancy, the number of threads assigned to each problem is not
allowed to drop below the point where the shared memory becomes
the occupancy-limiting factor.

3.6 ELL
The implementation of the flexible batched SpMV kernel based on the
ELL format (we denote the batched kernel “ELL”) is an immediate
derivation of the standard ELL SpMV from [6]: Each thread of the
block processes a different row, forming the partial sums of its
row in thread-local memory, while the thread block traverses the
column indices and values from left to right. After completion, the

ScalA17, November 12–17, 2017, Denver, CO, USA H. Anzt et al.

1 void SpMV_COO(in t nnz , in t *rowidx , in t *colidx , f l oa t *val , f l oa t *x, f l oa t *y) {
2 for (in t i = 0; i < nnz; ++i) {
3 y[rowidx[i]] += val[i] * x[colidx[i]];
4 }
5 }

1 void SpMV_CSR(in t m, in t *rowptr , in t *colidx , f l oa t *val , f l oa t *x, f l oa t *y) {
2 for (in t i = 0; i < m; ++i) {
3 for (in t j = rowptr[i]; j < rowptr[i+1]; ++j)
4 y[i] += val[j] * x [colidx[j]];
5 }
6 }

1 const int T = thread_count;
2 void SpMV_CSRI(in t m, in t *rowptr , in t *colidx , f l o a t *val , f l o a t *x, f l o a t *y) {
3 in t row = -1, next_row = 0, nnz = rowptr[m];
4 for (in t k = 0; k < T; ++k) {
5 for (in t i = k*nnz / T; i < (k+1)*nnz / T; ++i) {
6 while (i >= next_row) next_row = rowptr [++row +1];
7 y[row] += val[i] * x[colidx[i]];
8 }}}

1 void SpMV_ELL(in t m, in t max_nnz , in t *colidx , f l oa t *val , f l oa t *x, f l oa t *y) {
2 for (in t i = 0; i < m; ++i) {
3 for (in t j = 0; j < max_nnz; ++j) {
4 y[i] += val[i+j*m] * x[colidx[i+j*m]];
5 }
6 }
7 }

Figure 2: Sequential C implementations of basic SpMV algorithms.

intermediate results are written into the output vector locations in
global memory. Conversely to the standard ELL kernel, the values
of the input vector are read from shared memory, and the thread
block size is adjusted to the matrix size such that each thread block
handles one problem of the matrix batch.

4 PERFORMANCE EVALUATION
4.1 Experiment setup
For the performance analysis, we use the following test benchmark
consisting of 32 matrices from the SuiteSparse matrix collection [8]:
pivtol, tomography, west0989, G45, GD02_a, Si2, ck656 ex25,
jgl011 lock_700, fs_541_1, mbeacxc, dwt_918, mcfe, dwt_607,
rbsa480, gr_30_30, bcsstk34, cage8, ex27, can_838, bcsstm34,
USAir97, bp_1600, rotor2, msc00726, nos3, G2, dwt_992, ex2,
tols90, bcsstk02. We focus on square matrices of order up to
1024, with real entries, including a variety of problems to cover
a large spectrum. Concretely, this subset contains matrices with
size n ∈ [11, 1015], number of nonzeros nnz ∈ [76, 38352], and
nnz/n ∈ [3.0, 66.0]. The specific operation we target isy := A ·x +y,
which requires 2 · nnz floating-point arithmetic operations (flops),
and allows for much flexibility in terms of scaling y before the
operation (e.g., scaling y with 0 to compute y = A · x).

The performance evaluation is split into three parts. In the first
experiment, we quantify the performance advantages that the flexi-
ble batched routines provide over the standard SpMV kernels when
processing a homogeneous collection (batch) consisting of an in-
creasing number of identical matrices.

In the second part, we compare the batched kernels against each
other, using homogeneous batches consisting either of the problems
from the test benchmark, or custom-engineered matrices where we
control the density and nonzero distribution. Although it is possible

towrite amuchmore efficient kernel for this problem setting (which,
in particular, reuses the information about the problem size and
the nonzero locations), we argue that this experiment is useful to
extract information about which format and kernel to choose for
batches containing similar problems.

In the third part of the experimental analysis, we consider batches
comprising problems with different characteristics. First, we look
into settings where all matrices in the batch are of similar size but
differ in the sparsity pattern. For this purpose, we select 12 matrices
from the test benchmark of order 800–1,024, and create the batch
by appending these problems in random order. Second, we consider
batches containing any of the matrices in the test benchmark.

All experiments were conducted on the compute nodes of the
PizDaint supercomputer at the Swiss National Computing Centre
(CSCS). Although irrelevant for the performance analysis, the host
contains an Intel E5-2690 v3 (Haswell) processor with 12 cores. All
computations were executed by the NVIDIA Tesla P100 GPU (com-
pute capability 6.0), using double precision arithmetic, for which
NVIDIA lists a peak performance of 5.3 TFLOPs (1012 flops/second).
The P100 is equipped with 16 GB of main memory that are accessed
at a theoretical peak bandwidth of 732 GB/s. Using NVIDIA’s CUDA
toolkit version 8.0, we designed the flexible batched routines to be
integrated into the MAGMA-sparse software library [3]. MAGMA-
sparse was also used as experiment ecosystem, and provided the
standard SpMV reference implementations.

4.2 Experimental results
Wefirst quantify the benefits of leveraging custom-designed batched
kernels over the standard SpMV routines when processing batches
of small matrices. For this purpose, we select 12 problems with
between 800 and 1,024 unknowns from the test benchmark, and

Flexible Batched Sparse Matrix-Vector Product on GPUs ScalA17, November 12–17, 2017, Denver, CO, USA

cage8 can_838 dwt_992

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

ex25 ex27 gr_30_30

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

mcfe msc nos3

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

Si2 rotor2 west0989

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

70

80

G
F

L
O

P
s

ELL

std. ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

std. CSR

COO

Figure 3: Performance of the standard and the flexible batched SpMV routines for homogeneous batches.

create homogeneous batches. In Figure 3 we visualize the perfor-
mance achieved by the standard SpMV routines versus the flexible
batched SpMV kernels when processing batches of increasing size.
In order to process a batch with multiple matrices via the standard
SpMV kernels, we loop over the kernel invocations. For the standard
CSR kernel, MAGMA-sparse simply interfaces to NVIDIA’s cuS-
PARSE library [13]; the standard ELL kernel is the implementation
available in MAGMA-sparse [4].

The results of this experiment reveal that the performance of
the standard SpMV kernels never exceeds 5 GFLOPs. Furthermore,
although there is no clear winner among the batched SpMV ker-
nels, they all complete the operation at least 10× faster than their
standard counterparts. For balanced problems, such as dwt992,
gr_30_30, and nos3, the performance of the ELL kernel surpasses
70 GFLOPs, a rate which is unmatched by any other kernel. At
the other end of the spectrum, the CSRI kernel achieves very good

ScalA17, November 12–17, 2017, Denver, CO, USA H. Anzt et al.

0 10 20 30 40 50

nonzeros per row

0

10

20

30

40

50

60

70

G
F

L
O

P
s

CSR_scal

CSR_vec

CSR_smart

CSR-I

std. CSR

0 10 20 30 40 50

nonzeros per row

0

20

40

60

80

100

G
F

L
O

P
s

CSR_scal

CSR_vec

CSR_smart

CSR-I

std. CSR

Figure 4: Performance of the standard and flexible batched CSR-based SpMV routines for a homogeneous batch consisting of
1000 square matrices of order 1024 with controlled density and nonzero distribution. The nonzeros are either distributed
equally among the rows (left) or accumulated in few rows (right).

0

20

40

60

80

100

120

G
F

L
O

P
s

ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

COO

piv
tol

we
st0
98
9

GD
02
_a
ck6
56
jgl0
11

fs_
54
1_
1

dw
t_9
18

dw
t_6
07

gr_
30
_3
0
ca
ge
8

ca
n_
83
8

US
Air
97
rot
or2 no

s3

dw
t_9
92
tol
s9
0

tom
og
rap
hy G4

5 Si2 ex
25

loc
k_
70
0

mb
ea
cxc mc

fe

rbs
a4
80

bc
sst
k3
4
ex
27

bc
sst
m3
4

bp
_1
60
0

ms
c0
07
26 G2 ex

2

bc
sst
k0
2

100

102

no
nz
er
os

Figure 5: Performance of the flexible batched SpMV routines for all matrices in the test benchmark ordered in increasing
nonzero-per-row ratio.

performance for unbalanced problems containing many nonzero el-
ements, such as ex25 and msc. In these cases, the ELL kernel suffers
from a significant zero-padding overhead. For the very sparse prob-
lem west0989 the fastest options are CSR_scal and COO. Overall,
we acknowledge that the COO kernel achieves very good perfor-
mance across the complete test suite. In addition to being the fastest
option in most of the cases, the COO kernel is the second-best choice
in all remaining cases where a different format is superior.

Next, we focus on the CSR format, for which we developed four
kernels that differ in how they balance the workload. For reference,

we also include the standard CSR SpMV from NVIDIA’s cuSPARSE
in this analysis. For the next experiment we generate a homoge-
neous batch containing 1,000 square matrices of size 1, 024 and
vary the density and nonzero distribution. We analyze the perfor-
mance in relation to the average number of nonzero elements per
row. On the left-hand side of Figure 4, we test a balanced nonzero
distribution. The results show that the batched CSR_scal offers
very good performance for low nonzero-per-row ratios. This comes
from the fact that the data reads are mostly coalescent. The perfor-
mance of CSR_scal drops in case there are more than 4 nonzeros

Flexible Batched Sparse Matrix-Vector Product on GPUs ScalA17, November 12–17, 2017, Denver, CO, USA

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

G
F

L
O

P
s

ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

COO

std. CSR

std. ELL

0 2000 4000 6000 8000 10000

batch size

0

100

200

300

400

500

600

G
B

/s

ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

COO

Figure 6: Performance (left) and sustained memory bandwidth (right) of the flexible batched SpMV routines applied to a hetero-
geneous batch consisting of a random compilation of the matrices analyzed in Figure 3.

per row, while the performance of CSR_vec continues to improve.
CSR_smart is a good trade-off between CSR_scal and CSR_vec, as it
provides between 35 and 60 GFLOPs for most of the tested scenarios.
The sequence of standard CSR SpMV calls never delivers more than 5
GFLOPs. Especially for increasing nonzero count, the performance
of CSRI is competitive or even superior to CSR_smart. However, for
low nonzero-per-row ratios, CSR_scal and CSR_smart are faster.
Conversely, on the right-hand side plot of Figure 4, CSRI gives
the best performance in all cases. This is expected as this exper-
iment configures a batch of extremely unbalanced matrices with
the nonzeros accumulated in a few rows. We recall that the good
performance that CSRI achieves for this problem comes at the price
of a preprocessing step to calculate the balancing information.

In Figure 5 we analyze the performance of the flexible batched
SpMV kernels achieved for a homogeneous batch of 10000 matri-
ces of the test benchmark. The matrices are ordered in the x-axis
according to increasing nonzero-per-row ratio. A larger value of
this parameter makes the CSR_scal kernel less attractive while
the performance of CSR_vec increases with the density. CSRI and
CSR_smart outperform CSR_vec and CSR_scal in most cases. None
of the CSR-based kernels is competitive to the COO kernel, which
can be identified as overall winner in this experiment. Only for bal-
anced matrices, the ELL kernel outperforms all other competitors.
However, the performance of ELL is very problem-dependent, and
for unbalanced nonzero distributions, it yields low performance.

We now turn to heterogeneous batches. First, we compose a batch
with the matrices we analyzed in Figure 3. These matrices are very
different in their nonzero pattern, but they all share similar size (800–
1024 rows/columns). In Figure 6 we show performance (left) and
bandwidth (right) for the distinct batched SpMV kernels. In the latter,
we also account for explicit zeros read into the multiprocessors. We
notice that the ELL kernel achieves memory access rates beyond 500
GB/s, which is about 70% of the theoretical peak [12]. COO attains
around 450 GB/s; and CSR_smart and CSRI deliver around 300
GB/s. However, the memory bandwidth is not the relevant factor
in terms of runtime performance and, although the ELL kernel was
the performance winner for selected problems in Figure 3, it only
achieves about 40 GFLOPs in this experiment. Higher throughput
is achieved by CSR_smart (45 GFLOPs), CSRI (50 GFLOPs), and

COO (55 GFLOPs). We mention that it is possible to improve the
ELL kernel by using the sliced ELL format instead [4]. There, the
overhead introduced from zero-padding is reduced by enforcing the
same nonzero count only for those rows located in the same block.
However, we refrain from this optimization step as we expect the
benefit to be moderate: the height of the distinct row-blocks should
at least match the warp size (32), which is relatively large compared
to the small matrices we focus on.

Finally, we consider batches containing all of the matrices in the
test benchmark, arranged in random order. Figure 7 (right) shows
that the ELL kernel sustains a memory access rate around 500 GB/s.
At the same time, the performance drops from 40 to 30 GFLOPs,
which is likely due to the large number of small and unbalanced
test matrices in the batch. Conversely, the performance of the other
formats is not affected, and CSR_smart, CSRI and COO exceed 45,
50 and 55 GFLOPs, respectively.

We conclude that across all sparsity formats, the COO kernel
achieves the best performance for heterogeneous batches. If the
batch consists of balancedmatrices only, the ELL kernel becomes the
preferred choice, achieving up to 80 GFLOPs. In a one-touch-only
scenariowhere all matrices are stored in CSR format, the CSR_smart
kernel is the best option. If a preprocessing step is justified by a
high number of kernel invocations, the CSRI kernel is much faster
for batches consisting of unbalanced problems.

5 SUMMARY AND OUTLOOK
We have developed and implemented a set of flexible batched SpMV
kernels that accommodate the CSR, COO and ELL sparse matrix
storage formats. The routines can efficiently process matrix batches
where each problem is different in terms of size, nonzero count
and nonzero pattern. Although the performance of the distinct
kernels is very problem-dependent, our experimental results on
an NVIDIA P100 GPU, using batches comprising very different
matrices, reveled that the developed kernels based on COO and
CSR are able to sustain a performance of about 50 GFLOPs. This
corresponds to a 25× speed-up compared to the use of a sequence
of invocations to standard implementations of SpMV.

In the future we plan to further optimize the formats by deter-
mining the resources allocated to the distinct problems based on

ScalA17, November 12–17, 2017, Denver, CO, USA H. Anzt et al.

0 2000 4000 6000 8000 10000

batch size

0

10

20

30

40

50

60

G
F

L
O

P
s

ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

COO

std. CSR

std. ELL

0 2000 4000 6000 8000 10000

batch size

0

100

200

300

400

500

600

G
B

/s

ELL

CSR-I

CSR_smart

CSR_scal

CSR_vec

COO

Figure 7: Performance (left) and sustained memory bandwidth (right) of the flexible batched SpMV routines applied to a hetero-
geneous batch consisting of a random compilation of all the matrices in the test benchmark.

the matrix characteristics. Furthermore, we want to extend the
performance assessment to also account for the energy usage, and
compare resource efficiency with other manycore architectures that
feature a more sophisticated cache hierarchy.

ACKNOWLEDGMENTS
This work was partly funded by the U.S. Department of Energy
Office of Science, Office of Advanced Scientific Computing Re-
search, Applied Mathematics program under Award Number DE-
SC-0010042. H. Anzt was supported by the “Impuls und Vernet-
zungsfond” of the Helmholtz Association under grant VH-NG-
1241. G. Flegar and E. S. Quintana-Ortí were supported by projects
TIN2014-53495-R of the Spanish Ministerio de Economía y Competi-
tividad and the EU H2020 project 732631 OPRECOMP.

The authors want to acknowledge the access to the PizDaint su-
percomputer at the Swiss National Supercomputing Centre granted
under the project #d65.

REFERENCES
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2016.

Performance, design, and autotuning of batched GEMM for GPUs. Springer Inter-
national Publishing, Cham, 21–38.

[2] H. Anzt, E. Chow, and J. Dongarra. 2016. On block-asynchronous execution on
GPUs. Technical Report 291. LAPACK Working Note.

[3] Hartwig Anzt, Mark Gates, Jack Dongarra, Moritz Kreutzer, Gerhard Wellein, and
Martin Köhler. 2017. Preconditioned Krylov solvers on GPUs. Parallel Comput.
(2017), –. https://doi.org/10.1016/j.parco.2017.05.006

[4] H. Anzt, S. Tomov, and J. Dongarra. 2014. Implementing a Sparse Matrix Vector
Product for the SELL-C/SELL-C-σ formats on NVIDIA GPUs. Technical Report
ut-eecs-14-727. University of Tennessee.

[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.
Pozo, C. Romine, and H. Van der Vorst. 1994. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA.

[6] Nathan Bell and Michael Garland. 2008. Efficient Sparse Matrix-Vector Multiplica-
tion on CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA Corp.

[7] Steven Dalton, Nathan Bell, Luke Olson, and Michael Garland. 2014. CUSP:
Generic Parallel Algorithms for Sparse Matrix and Graph Computations. (2014).
http://cusplibrary.github.io/ Version 0.5.0.

[8] T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection.
ACM Trans. on Mathematical Software 38, 1 (2011), 1–25. https://doi.org/10.1145/
2049662.2049663

[9] J. Dongarra, I. S. Duff, M. Gates, A. Haidar, S. Hammerling, J. Higham, J. Hogg, P.
Valero-Lara, D. Relton, S. Tomov, andM. Zounon. 2016. A Proposed API for Batched
Basic Linear Algebra Subprograms. Technical Report 2016.25. The University of
Manchester, ISSN 1749-9097.

[10] Goran Flegar and Enrique S. Quintana-Ortí. accepted. Balanced CSR Sparse
Matrix-Vector Product on Graphics Processors. In EuroPar 2017.

[11] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R.
Bishop. 2014. A Unified Sparse Matrix Data Format for Efficient General Sparse
Matrix-Vector Multiplication onModern Processors withWide SIMD Units. SIAM
J. Scientific Computing 36, 5 (2014), C401–C423. https://doi.org/10.1137/130930352
arXiv:http://dx.doi.org/10.1137/130930352

[12] NVIDIA. 2016. Whitepaper: NVIDIA Tesla P100. WP-08019-001_v01.1. (2016).
[13] NVIDIA. 2017. CUDA toolkit V8.0.

https://doi.org/10.1016/j.parco.2017.05.006
http://cusplibrary.github.io/
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/130930352
http://arxiv.org/abs/http://dx.doi.org/10.1137/130930352

	Abstract
	1 Introduction
	2 Related Work
	2.1 SpMV on manycore architectures
	2.2 Batched routines

	3 Design of flexible batched SpMV kernels for GPUs
	3.1 Flexible batched SpMV
	3.2 GPU kernel design
	3.3 COO
	3.4 CSR
	3.5 CSR-I
	3.6 ELL

	4 Performance Evaluation
	4.1 Experiment setup
	4.2 Experimental results

	5 Summary and Outlook
	References

