
HigH-Performance comPuting

52 Computing in Science & Engineering 1521-9615/17/$33.00 © 2017 IEEE Copublished by the IEEE CS and the AIP May/June 2017

With Extreme Computing,
the Rules Have Changed

Jack Dongarra, Stanimire Tomov, Piotr Luszczek, Jakub Kurzak,
Mark Gates, Ichitaro Yamazaki, Hartwig Anzt, Azzam Haidar,
and Ahmad Abdelfattah | University of Tennessee Knoxville

On the eve of exascale computing, traditional wisdom no longer applies: high-performance com-
puting is gone as we know it. A range of new algorithmic techniques is emerging in the context of
exascale computing, many of which defy the common wisdom of HPC and are considered un-
orthodox but could turn out to be a necessity in the near future.

S
cience priorities lead to scientific models, and models are implemented in the form of algorithms.
Algorithm selection is based on various criteria, such as accuracy, verification, convergence, perfor-
mance, parallelism, and scalability. Models and associated algorithms aren’t selected in isolation
but must be evaluated in the context of the existing computer hardware environment. Algorithms

that perform well on one type of computer hardware could become obsolete on newer hardware, so selec-
tions must be made carefully and may change over time.

Future trends in high-performance computing (HPC) can be seen in the US Department of En-
ergy CORAL (Collaboration of Oak Ridge, Argonne, and Livermore) initiative, which is aimed at
deploying “pre-exascale” machines with performance in the range of hundreds of petaFLOPS. The
list of challenges facing the algorithm developer includes targeting massive parallelism, reaching mil-
lions of cores, dealing with hybrid architectures (including GPU accelerators), and managing complex
memory hierarchies, all with smaller amounts of faster 3D-stacked memories and larger amounts of
traditional memories.

www.computer.org/cise 53

In the sections to follow, we first describe the
particular challenges posed by new hardware tech-
nologies and then present a selection of emerging,
often unorthodox, algorithmic techniques to deal
with these challenges.

Moore’s Law and Dennard Scaling
Moore’s law1 is the most often quoted dictum by
which the silicon revolution took over our lives.
Never mind that it was meant to last only until
1975 and was later adjusted to fit a slower (but still
exponential) growth rate.2 In essence, the law ob-
serves exponential growth of transistors in every
new generation of integrated circuits and projects
it into the following decade. While Gordon Moore
himself suggested that this would allow higher
speed for the same power (per unit area), it was
Robert Dennard and colleagues3 who showed how
the observed speed of the chips would increase ex-
ponentially. Confluence of these trends gave us the
proverbial “free lunch”: write any code and wait for
the Moore/Dennard duo to speed it up. The joy-
ride ended abruptly around 2005, when the per-
square-inch heat emitted by chips was on track to
exceed that of a rocket nozzle—and soon after, the
surface of the sun—due to the effect of increasing
main-clock frequency.4

This ended Dennard scaling, but Moore’s law
progression continues, albeit in a somewhat abated
form: the shrink periods in chip feature size are
ever longer, each one requiring an even bigger in-
vestment in terms of science, innovation, engineer-
ing, and money. Instead of simply faster processors,
we get processors with more cores. If we don’t get
faster results on the new generation of hardware,
we can now blame only our coding skills: we didn’t
provide for the increased parallelism. Going be-
yond the outgoing breed of commercial 22-nm
chips and the established 14-nm technology, IBM
announced a successful research result by produc-
ing a 7-nm germanium integrated circuit.5 Fol-
lowing suit, Intel plans to move away from silicon
for the 7-nm manufacturing process.6,7 Nobody is
really surprised, because if the feature size shrinks
by half in two years, then we have only about a
decade before we reach the lattice parameter for
silicon, which is 0.543 nm.

Clock Variation
For a long time, CPU speed has been associated
with frequency.8 But that trend has now gained a
new meaning due to the flexible treatment of clock
frequency in modern CPUs and GPUs. Frequency

scaling originated in laptop CPUs; desktop and
server CPUs, on the other hand, featured technolo-
gies such as Turbo Boost and Turbo Core. All of
them allowed CPU frequency to be adjusted by ex-
ternal factors—usually, system load and available
battery charge. The constant increases in clock fre-
quencies came to an end when Dennard scaling no
longer continued. The changes in CPU/GPU fre-
quency continue, however, due to various factors.
High frequency still bodes well for performance,
and modern chips are capable of recognizing their
workload to the point that when the demand for
computing capacity increases, the clock revs up to
complete the task at hand.

But there’s a limit to this technique because the
thermal bounds can’t be breached without the chip
suffering irreversible damage. So, as soon as the tem-
perature sensors detect dangerous levels of dissipated
heat, the frequency is scaled appropriately, regard-
less of workload status. A less obvious application
for this technique pertains to regulation of the con-
sumed power. It’s hard to imagine why a processor
would need to regulate its power consumption when
thinking small. At extreme scales, the number of
processing cores already reaches over a million cores.
A sudden increase in application workload is mag-
nified accordingly, which results in a sudden surge
of demand for electric power unlike anything that
power houses have ever faced. The usual fluctua-
tions in electric power consumption have to do with
time of day and are a result of changes in human
activity. Over decades, these could be accounted for,
although blackouts can still occur when too many
people turn on their air conditioning in a short win-
dow of time. In comparison, CPUs and GPUs can
reduce their power consumption when idle by nearly
90 percent, from a few hundred watts to a few tens.
If only 10,000 processors changed their state from
idle to fully loaded, the electrical power demand
would change by nearly 1 MW, and not just for a
particular time of day, as is the case for rush-hour
traffic and evening TV watching.

Power houses can’t cope with such swings in
demand and heavily penalize offending sites, and
supercomputer operators institute policies that help
manage workload variation and associated power
fluctuations, often through power capping and
frequency adjustments. It then becomes hard to
precisely answer the question, how fast is a CPU
or GPU in my supercomputer? It depends on the
temperature—when machine room cooling works
well, processors can increase their frequency be-
yond the base level and thus magnify the entire

HigH-Performance comPuting

54 May/June 2017

supercomputer’s performance. But if the electrical
power is at a premium and the center can’t draw
any more from the power house, power capping
will be in effect, and thus frequency will stay at the
baseline level or even drop below it to counteract
a potential surge and ensuing penalties. In short,
the clock variation is here to stay, and as a conse-
quence, not all cycles are made equal.

More Ops ≠ More Time
Complexity theory clearly dictates that fewer op-
erations, especially at a lower asymptotic bound,
are preferable for optimal execution time. In high-
performance and scientific computing, a similar
guideline used to apply when every cycle and ev-
ery instruction were at a premium. But this was
the case in the single-core world, and it has already
changed in the multicore era. Worse yet, it’s fur-
ther exacerbated in the case of hardware accel-
erators with total compute power exceeding 1,000
GFLOPs in double precision and bandwidth top-
ping at 200 Gbytes/s. An order of magnitude more
operations have to be performed for every byte that
arrives from the main memory. Computation is fast
only when it happens in processor registers—even
the fastest cache needs a handful of clock cycles to
deliver data items.

Compared to anything else, and especially to
the main memory that holds the majority of data
structures, operations on registers are virtually free,
with data movement and synchronization being the
essential factors contributing to algorithm speed.
Projections for future machines only exacerbate the
current data movement crisis. Even with the newly
introduced stacked memory that promises a mind-
boggling 1 Tbytes/s of bandwidth, compute devices
will eventually achieve performance levels in excess
of 10 TFLOPs, and the bandwidth/compute imbal-
ance will become even more pronounced. In such
an environment, we must abandon the notion that
knowing the number of operations for an algorithm
is a good indicator of its ultimate performance.
Rather, we have to look critically at the kind of op-
erations that are required. And above all, we have to
focus on data movement, synchronization points,
and understanding the nature of interaction be-
tween threads and processes in the system to make
sure that they can proceed on their own for as long
as possible without costly communication.

In addition, we have to examine the amount of
data that the algorithm accesses and choose a dif-
ferent one that can do away with fewer accesses—
we call this access-averse methodology. We already

have meaningful examples of a substantial payoff
from this new approach throughout the numerical
linear algebra field. We see it in eigenvalue and sin-
gular value computations, where algorithms with
double the amount of floating-point work are al-
ready faster on current systems and will only get
faster moving forward with technological advances
in hardware. We also see this in sparse matrix com-
putations that use subspace projection and improve
accuracy through extra work while being overall
faster than any other contending algorithm. While
in some way it might be burdensome to rewrite old
software and reinvent old algorithms, we ultimately
stand to benefit from the new approaches that
technological progress requires us to invent.

Responsibly Reckless
The ultimate goal for high-performance numeri-
cal libraries, which has also driven their progress
over the years, is to deliver accurate results in the
fastest possible time. Accuracy by itself, however,
is often associated with extra computational effort
and therefore is at odds with speed. Maintaining
an accuracy versus speed standoff for traditional
algorithms on today’s and tomorrow’s emerging
extreme computing systems is becoming increas-
ingly challenging. Indeed, applications from big
data analytics to machine learning, in which “sen-
sors” produce extreme amounts of data (including
redundant or faulty data), require various optimi-
zations to sift through and find a “best” solution
in a limited time period. However, this push also
motivates the development of algorithms that we
call responsibly reckless, algorithms that compute
quickly while still being responsible for accuracy
through nontraditional, innovative approaches.

Examples are numerous, including mixed-
precision and randomization algorithms, as well as
some of the already mentioned methods that trade-
off more flops to gain in overall time to solution.
To illustrate the concept, let’s concentrate on the
general enough problem of solving a linear system
of equations:

Ax = b.

The traditional approach is to use a Gaussian
elimination (GE) with partial pivoting, which in
matrix form is known as LU factorization with
partial pivoting. In this approach, A is decomposed
so that PA = LU, where L and U are lower and up-
per triangular matrices, respectively, and P is a
permutation matrix. This is achieved by reducing

www.computer.org/cise 55

A, column by column, to the upper triangular U
using elementary transformations (swapping rows,
scaling a row, and adding a scaled row to another
row) that form the lower triangular L and the per-
mutation P matrices. To reduce a current column
to zeros below the diagonal, we can use the row
going through the diagonal—this results in an LU
factorization without pivoting, which is numeri-
cally unstable. With partial pivoting we select the
row that has the largest absolute value in the cur-
rent column, swap it with the diagonal row, and
use it in the reduction. This strategy is sufficient in
practice to adequately reduce round-off error. If A
is of size n × n, the computation is of order O(n3)
and the pivoting adds an O(n2) complexity. While
this is a lower-order term, the challenges and com-
munication overhead due to pivoting have become
critical on new architectures, especially on GPUs
in variations when A is symmetric and indefinite.9

GE stability is strongly related to the growth
factor that measures how large the entries of the
matrix become in the GE process. As in many nu-
merical algorithms, the choice of a pivoting strategy
is the result of a tradeoff between stability concerns
and performance. In respect to this, a good GE
algorithm should minimize the growth factor (to
provide numerical stability) and the amount of piv-
oting (to avoid penalizing performance). An exam-
ple of a responsibly reckless approach here is based
on a randomization technique where the original
matrix A is transformed/preconditioned into a suf-
ficiently “random” matrix so that, with a probabil-
ity close to 1, pivoting isn’t needed. The technique
was initially described by Douglas Parker10 and
extended later for dense linear systems, either gen-
eral11 or symmetric indefinite.9 The randomization
is referred to as random butterfly transformation
(RBT)11 and consists of a multiplicative precondi-
tioning UTAV, where U and V are chosen among a
particular class of random matrices called recursive
butterfly matrices. Then, GE with no pivoting is
performed on the matrix UTAV and, to solve Ax = b,
we solve (UTAV)y = UTb, followed by x = Vy.

Bombardment
With the growing level of parallelism in computer
architectures, global reductions are increasingly
becoming the performance-limiting factor. At the
same time, the number of (parallel) floating-point
operations in an algorithm can be expected to be-
come less relevant for the execution time, which
promotes the idea of adding extra operations in
favor of improved algorithm properties. Follow-

ing this idea, the concept of algorithmic bombard-
ment12 was proposed nearly 20 years ago for the
iterative solution of large, sparse linear systems.

The traditional approach for the iterative solu-
tion process is to select one iterative method and
apply it to the problem. In particular, Krylov sub-
space solvers have worked well for a large range of
problems, but for a problem with unknown charac-
teristics, it’s often difficult to identify the method
of choice. The large variety of Krylov solvers to
choose from also makes the selection difficult. The
distinct methods differ in how they deal with the
initial guess the solver is started with, as well as the
linear problem’s characteristics, such as eigenvalue
distribution. Depending on this, an iterative solver
can converge faster or slower—or in the worst case,
even break down.

The concept of algorithmic bombardment ad-
dresses this challenge in a sledgehammer fashion:
instead of addressing the problem with a specific
iteration method, a poly-algorithm attack applies
a preselected set of solvers simultaneously. The
key idea is to successively drop the methods that
break down and benefit from the fast convergence
of the most suitable method included in the set.
Although the poly-iterative approach has some
overhead, it has shown to be very efficient, in par-
ticular for a set of similar Krylov-based methods.
The structural similarity of these solvers helps keep
a low number of synchronization points: the cen-
tral (and computationally most expensive) building
block of all Krylov methods is a sparse matrix vec-
tor product needed for the generation of the Krylov
subspace. Algorithms are also composed of inher-
ently parallel vector updates and global reduction
operations that require synchronization. Multiply-
ing the sparse matrix with a set of vectors instead of
a single vector usually incurs little computational
overhead, with no additional synchronizations.
Similarly, the simultaneous reduction of multiple
vectors is insignificantly more expensive than a sin-
gle reduction on parallel architectures. Finally, the
update of a set of vectors being part of the distinct
algorithms might not incur any overhead, as it can
often be hidden with the global reduction phases
guiding the algorithm’s execution time.

Consequently, interleaving a set of Krylov
methods by generating the distinct subspaces via a
blocked sparse matrix vector product—and gather-
ing the reduction phases such that a low number of
synchronization points is maintained—typically re-
sults in a small runtime overhead compared to run-
ning only one iterative solver. But while the outcome

HigH-Performance comPuting

56 May/June 2017

when choosing one method is unknown, the poly-
iterative approach not only increases the chance of
one method converging but also provides the best
convergence rate of the solvers included in the set.

The poly-iterative approach offers additional
benefits for fault-tolerance aspects. The increasing
complexity of hardware platforms undoubtedly re-
sults in a higher rate of soft errors such as bit flips.
These can degrade an iterative solver’s convergence
or, in the worst case, even result in the breakdown
of an algorithm. For the algorithmic bombardment
approach, it’s less crucial if one method of the set
breaks down due to numerical instability or soft-
error: the respective solver is simply dropped, and
the iterations continue with one less solver. Obvi-
ously, this doesn’t make the poly-iterative approach
bit-flip proof, but it enhances the chance of suc-
cessful termination compared to a single iteration
method.

Dataflow Scheduling
Dataflow scheduling is a very old idea that offers
numerous benefits to traditional multithreading
and message passing, but it somehow never really
went mainstream. Until now. Part of the problem
is cultural, as dataflow programming takes some
control away from the programmer by forcing a
more declarative, rather than imperative, style of
coding. You need to let the system decide what
work is executed where and at what time. With
the prospect of billion-way parallelism looming
on the HPC horizon, there simply is no other
choice.

The multicore revolution of the 2000s brought
the idea back and put it in the mainstream. One
of the first task-based multithreading systems
that received attention in multicore times was the
Cilk language, originally developed at MIT in
the 1990s and mostly offering nested parallelism,
heavily geared toward recursive algorithms. About
the same time, the idea of superscalar scheduling
gained traction, based on scheduling tasks by re-
solving data hazards in real time, in a similar way
that superscalar processors dynamically schedule
instructions.

The appeal of the superscalar model is its sim-
plicity. You basically present the compiler with se-
rial code, where tasks are, in principle, functions.
They have to be side-effect-free (no accesses to
global variables and so on). Then you have to mark
the parameters as input, output, or in-out. Based
on this information, at runtime, the task graph is
built, and tasks are scheduled in parallel to mul-

tiple cores by resolving data dependencies and haz-
ards: read after write, write after read, write after
write. This is a powerful idea that’s simple to grasp
and allows for scheduling complex workloads to
many cores.

This technique was pioneered by a project from
the Barcelona Supercomputer Center, which went
through multiple names as its hardware target was
changing: GridSs, CellSs, SMPSs, OMPSs, and
StarSs, where “Ss” stands for superscalar.13 A similar
development was the StarPU project from INRIA,
which applied the same methodology to systems
with GPU accelerators. It was named for its capa-
bility to schedule work to CPUs and GPUs, there-
fore *PU. One scheduler (SuerGlue) was developed
at Uppsala University, and we developed our own
(Quark) at the University of Tennessee Knoxville
(UTK), implementing the Plasma numerical library
on top of it. At some point, all these projects received
extensions for scheduling in distributed memory.

Nothing accelerates adoption of a new para-
digm more than standardization. Luckily, the
OpenMP community has been swiftly moving
forward with standardization of new scheduling
techniques for multicores. First, the OpenMP 3.0
standard adopted the Cilk scheduling model, then
the OpenMP 4.0 standard adopted the supersca-
lar scheduling model.14 Not without significance
is the fact that the GNU compiler suite was also
quick to follow with high-quality implementations
of the new extensions. The results of our initial in-
vestigation indicate that at this point there are no
roadblocks to fully migrate the Plasma library from
Quark to OpenMP, which, in our minds, speaks
highly of the standard, as Plasma is a fully featured
numerical library.

Sadly, the situation is worse in programming
distributed-memory machines, where the MPI+X
model is currently the predominant solution
(meaning MPI plus OpenMP, POSIX threads,
CUDA, OpenCL, OpenACC, and so on). While
the superscalar model can be extended to support
distributed memory, the paradigm is inherently
nonscalable to very large core numbers, due to the
serial bottleneck of unrolling the task graph at run-
time. Numerous projects have tackled the problem,
including Charm++ from the University of Illinois,
Urbana-Champaign, Swift from Argonne, Paral-
leX from Louisiana State University (now Indiana
State University), just to name a few, and we joined
the fight with the PaRSEC and Pulsar systems de-
veloped at UTK. However, while dataflow sched-
uling seems inevitable at exascale, there’s currently

www.computer.org/cise 57

no paradigm on the radar that could serve as a
basis for standardization.

Communication Avoiding
The cost of executing software can be modeled as
a function of its computation and communication
costs (such as in terms of required cycle time or
energy consumption). For instance, the computa-
tion cost could be modeled based on the number of
required FLOPS, while the communication could
include synchronization and data transfer between
parallel processing units, as well as data movement
through levels of the local memory hierarchy. On
modern computers, communication has become
significantly more expensive compared to com-
putation. To address this hardware trend, several
communication-avoiding (CA) algorithms have
been developed by redesigning existing algorithms
to obtain the minimum communication cost for
solving a particular problem.15,16

For example, significant efforts have been
made to redesign dense matrix factorization al-
gorithms to obtain the minimum communica-
tion costs, such as LU and QR factorization algo-
rithms,17 with traditional algorithms communicat-
ing to factorize each column of the dense matrix.
In contrast, to reduce the number of required mes-
sages in a parallel environment via a CA algorithm,
each parallel processing unit would factorize its
local submatrix, followed by a global reduction
of the local factors to compute the final factoriza-
tion. A similar idea can be applied to reduce the
data movement through the local memory hierar-
chy by splitting the matrix into submatrices that
would fit in the faster memory. These algorithms
typically increase the computational costs and nu-
merical bounds by a small factor (such as a factor
of log(np), where np is the number of processing
units), but they can greatly improve performance
when communication dominates the costs of com-
puting the factorization.

There have also been significant efforts18 to
avoid communication in the iterative subspace pro-
jection methods for solving sparse matrix problems
(such as solving a linear system of equations or an
eigenvalue or singular value problem). At each iter-
ation of a traditional algorithm, a new basis vector
of the projection subspace is generated, which re-
quires communication. To reduce communication,
CA algorithms generate a set of s basis vectors at
once. Although the total computation or the com-
munication volume of the iterations can increase
depending on the surface-to-volume ratio of the

local sparse submatrix, CA algorithms reduce the
communication latency by a factor of s. Special
care must be taken to maintain the solver’s numeri-
cal stability, but emerging efforts18 aim to improve
the robustness of CA algorithms in practice (such
as deflation and preconditioning to improve the
convergence rates).

Mixed Precision
Traditionally, most scientific and engineering com-
puting has been done in double-precision 64-bit
arithmetic, with the expected ratio of single-
precision (32-bit) to double-precision performance
at 2× in favor of single. In the mid-2000s, interest in
using lower precision spiked due to infiltration of
the HPC domain by devices meant for consumer
electronics and embedded systems, which offered
outstanding performance in single precision and
inferior performance in double. Along came the
realization that, for some applications, single-
precision accuracy is more than enough, while for
others, the bulk of the work can be done in single
precision, and lost digits can be cheaply restored by
applying precision recovery techniques. Now that
hybrid architectures, including manycore copro-
cessors such as the Intel Xeon Phi, and hardware
accelerators, such as GPUs from Nvidia and AMD,
are an integral part of the HPC landscape, it only
seems natural to reap the benefits of mixed-precision
computing.

The turmoil started with the Sony/Toshiba/
IBM Cell processor, which initially offered 14×
more performance in single precision than in double
precision (later improved to 2× in the PowerXCell
architecture). When the Cell lost momentum, GPU
computing gained traction, with Nvidia leading
the charge. In Nvidia products, native support for
double precision started with the Tesla microarchi-
tecture, and the performance ratio fluctuated from
architecture to architecture, being 8:1 in Tesla, 2:1
in Fermi, and 3:1 in Kepler. The current Maxwell
line of cards is likely to never receive fast double-
precision units and will simply be bypassed for
HPC applications in favor of moving on to Pas-
cal, which comes with another twist. While its
double-precision specs aren’t yet known, it will
provide very fast half-precision (16-bit) operations
for applications in deep learning. In the meantime,
AMD followed suit and introduced double preci-
sion in the R600 architecture. For AMD chips, the
single-to-double performance ratio has been hover-
ing consistently around 5:1, going as high as 4:1 in
the Tahiti chips.

HigH-Performance comPuting

58 May/June 2017

Some numerical computing applications are
so well conditioned that single precision is all they
need. A prominent example is wave scattering for
oil exploration and computing radar signatures.
Computational lithography is another example.
Successful efforts have been made to explore single
precision in harder problems, such as molecular dy-
namics simulations. In this case, a class of problems
can be solved by mixing different precisions, such
that most of the work is done in lower or faster pre-
cision, while a smaller amount of work is done in
higher or slower precision, to recover the lost digits.
Well-conditioned systems of linear equations can
be solved in this manner by using the technique of
iterative refinement.19

Hardware-supported higher precision can easily
be emulated in software—for instance, a quadruple-
precision number can be represented by two
double-precision numbers, one storing the expo-
nent and the higher-order bits of the mantissa, and
the other storing the lower-order bits of the man-
tissa. While the exponent is limited to the double-
precision exponent, a quadruple-precision mantissa
can be represented. The cost is on the order of 10
lower-precision instructions to implement a single
higher-precision instruction, but when applied ju-
diciously to some parts of the algorithm, the tech-
nique opens the door for lowering precision in other
parts of the algorithm.20

Future state-of-the-art numerical software
should be able mix and match different precisions
in different stages to achieve the required accuracy
while maximizing performance.

Reproducibility
Exact reproducibility of computed results is a de-
sirable feature and a common requirement of sci-
entific software. It aides development to be able to
make certain changes in the code without altering
the end result. The landscape of extreme comput-
ing, with extreme levels of parallelism and dynamic
scheduling, makes exact reproducibility prohibi-
tively expensive.

One fundamental cause of nonreproducibility
is that floating-point arithmetic isn’t associative, so
in general,

(a + b) + c ≠ a + (b + c),

but rather there’s a small round-off difference be-
tween the two results. Any time there’s a similar re-
duction—such as a dot product or norm—runtime
choices affect the results.21 Using a different num-

ber of processors will cause a different grouping,
yielding a small difference in the result. Tuning the
block size for optimal performance, for example,
affects the result. Because of SIMD vector units
in today’s processors, even changing the mem-
ory alignment of data can change how data is
associated.

Moving a computation from a CPU to an ac-
celerator, such as a GPU or Xeon Phi, likewise
changes results as the computation is reorganized
to best fit the hardware characteristics. Dynami-
cally scheduled algorithms could choose where to
do a computation—on a CPU or on an accelera-
tor—based on runtime load balancing.

Often, these cause only small changes in the
values. When a decision is based on intermediate
values, however, the end result can be significant-
ly different. In LU decomposition, for instance,
the largest element in a column is chosen as the
pivot. If two elements are close in magnitude, a
small perturbation can cause a different pivot to
be chosen, so the resulting permutation P and LU
factors are completely different, while still satisfy-
ing PA = LU. When used to solve a system, Ax =
b, the result is still within some tolerance of the
correct x. A similar phenomenon occurs in the sign
choice when computing Householder reflectors,
hence affecting QR decomposition, eigenvalue,
and singular-value problems.

Another source of nonreproducibility is application-
based fault tolerance (ABFT),22 which incurs less
overhead compared to traditional checkpoint-restart
fault tolerance. While checkpoint-restart restores
the exact contents of memory after a fault, ABFT
recomputes missing data based on checksums. The
recomputation inherently incurs round-off errors
different than the original computation.

Some algorithms also include random data,
such as a random initial starting guess in itera-
tive algorithms, random sampling in Monte Carlo
methods, or RBT. Although repeatable pseudo-
random generators produce reproducible results for
debugging, it isn’t practical or desirable to always
use the same pseudorandom sequence in produc-
tion runs.

Some of these changes can be controlled, for
instance, by ensuring that data is aligned, using
the same number of processors, and using the
same block size. Other causes of nonreproduc-
ibility, however, are based on runtime behavior,
such as load balancing or node failures, and thus
are inherent in achieving optimal performance at
extreme scale.

www.computer.org/cise 59

Randomization
The HPC’s future hints at an explosive growth in
the volume of data and a relatively dismal growth
in the capabilities of communication and IO
systems. Under such conditions, it becomes
increasingly important to find algorithms that
communicate less and perform IO operations even
less than that. For an important set of problems in
numerical computing, a class of algorithms emerges
that seem to be an answer to these challenges: ran-
domization algorithms.

Most of us associate randomized algorithms
with Monte Carlo methods and view them as a des-
perate and final resort because they’re highly sen-
sitive to the random-number generator and often
produce outputs with low and uncertain accuracy.
Recently, new kinds of randomized algorithms
have been constructed for a range of problems that
play a central role in scientific computing and data
analysis, including least-squares problems and ma-
trix approximation problems, such as truncated
singular value decomposition and rank-revealing
QR decomposition. These new methods are insen-
sitive to the quality of randomness and produce
highly accurate results. At the same time, they offer
two major advantages, speed and simplicity, as in
many cases the randomized algorithm is the fastest
option, the simplest, or both.

Randomized methods solve these problems by
operating on a sketch of the input matrix instead of
the matrix itself. In the case of random sampling,
the sketch consists of a small number of carefully
selected and rescaled matrix columns or rows (for
random projections, the sketch consists of a small
number of linear combinations of the matrix col-
umns or rows). In other words, these methods
identify a subspace that captures most of the ac-
tion of the matrix. The matrix is then compressed
to this subspace, either explicitly or implicitly, and
a deterministic algorithm is applied to the reduced
matrix to compute the solution.

Some people in the numerical computing com-
munity have embraced the new algorithms. For in-
stance, in their article on the Blendenpick algorithm
for the least-squares approximation, Haim Avron,
Petar Maymounkov, and Sivan Toledo stated that
“randomization is arguably the most exciting and
innovative idea to have hit linear algebra in a long
time.”23 Others grapple with the probabilistic aspect
of the new methods, which, unlike their determinis-
tic counterparts, introduce a nonzero probability of
failure. This failure probability, however, is a user-
controllable parameter and can be rendered negli-

gible if necessary. The impracticality of demanding
constant, complete determinism is captured in a
quote from Harold Abelson and Gerald Sussman:
“In testing primality of very large numbers chosen at
random, the chance of stumbling upon a value that
fools the Fermat test is less than the chance that cos-
mic radiation will cause the computer to make an
error in carrying out a ‘correct’ algorithm.”24

The new classes of random sampling and pro-
jection algorithms offer numerous advantages when
dealing with large datasets coming from both sci-
entific (astrophysics, genomics, climate modeling)
and commercial applications (social networks, in-
formation retrieval systems, financial transactions).
In many cases, randomized algorithms beat their
classical counterparts in terms of accuracy, speed,
and robustness. They utilize modern computer ar-
chitectures better by exposing higher levels of par-
allelism than traditional numerical methods. At the
same time, they often produce more numerically
robust solvers by introducing implicit regulariza-
tion. While not a silver bullet, a careful application
of randomization ideas can lead to powerful frame-
works for a range of matrix problems and open the
path for using exascale resources to tackle big data
challenges.25,26

Autotuning
Although Moore’s law is still in effect, the multi-
core revolution has initiated a processor design
trend of moving away from architectural fea-
tures that don’t directly contribute to processing
throughput. This means a preference toward shal-
low pipelines with in-order execution and cutting
down on branch prediction and speculative execu-
tion. On top of that, virtually all modern architec-
tures require some form of vectorization to achieve
top performance, whether it be short-vector SIMD
(single instruction, multiple data) extensions of
CPU cores or SIMT (single instruction, multiple
thread) pipelines of GPU accelerators. With the
landscape of future HPC populated with complex,
hybrid vector architectures, automated software
tuning could provide a path toward portable per-
formance without heroic programming efforts.

This dramatically affects the way that fast
computational kernels are written. Take as an ex-
ample fast GPU implementations of the famed ma-
trix multiplication or its derivative, the convolution
operation in deep learning neural networks. Most
loops are tiled, their boundaries fixed, and entire
loop nests are completely unrolled into large blocks
of straight-line code. The remainders of the iteration

HigH-Performance comPuting

60 May/June 2017

space, nondivisible by block sizes, are treated
with cleanup codes. Most of the time, vectoriza-
tion is explicit (for example, SIMD using vector
intrinsics, SIMT using CUDA or OpenCL), and
so is data motion (loading scratchpad memories,
prefetching). This style of code allows for pipelin-
ing of floating-point instructions, hiding the la-
tency of load and store instructions, minimizing
integer and address arithmetic, and minimizing
branching. At the same time, a kernel optimized to
that extent for one device is no longer optimal for
another. One solution is to hire ninja programmers
who recode or retune each kernel from one device
to another. Another is to write kernels where tiling
sizes and other parameters are tunable and then ap-
ply the process of automated software tuning. It’s
worth mentioning that today’s devices have hardware
switches that can be controlled in software—for ex-
ample, Nvidia GPUs have software-controllable L1/
shared memory size and software-controllable width
of shared memory banks. It’s only natural to discover
the best settings in the process, otherwise known as
autotuning.

Automated software tuning was pioneered in
projects such as Atlas27 and Spiral,28 is the objective
of numerous academic projects, and is also prac-
ticed by hardware vendors providing libraries such
as BLAS for their devices. The basic premise is to
explore a search space and find the best performers.
The search space can be defined by a set of tunable
parameters, code transformations, implementation
variants, hardware switches, and so on, and can
then be pruned by applying a set of constraints that
eliminate obvious underperformers. Finally, it can
be searched to find the winners. Exhaustive search,
steepest descent methods, and genetic algorithms
are all valid approaches.

Another issue is application-level tuning, in
which the objective is to maximize performance
in a parallel run, executed by a large number of
devices (processors or accelerators). The first prob-
lem is granularity—the fact that, in most cases,
the level of parallelism can be increased at the cost
of a drop in serial performance of each device in
the mix and at the cost of a hike in communica-
tion. The second problem is the tradeoff between
load balance and communication, that is, the fact
that the former can be improved at the expense of
the latter. Unfortunately, making repeated runs to
find the optimum is a much less attractive option
due to the resources required at large scale. Right
now, the solution seems to lie in modeling and
simulation.

Moving toward the exascale challenge will re-
quire rethinking the entire HPC software

stack, as the size, complexity, and heterogeneity of
new machines render the existing software in-
frastructure obsolete. To the rescue come new al-
gorithmic techniques, such as CA algorithms,
mixed-precision algorithms, and randomization
methods, as well as new programming paradigms,
such as dataflow task scheduling, and performance
engineering techniques, such as automatic software
tuning. Many of these techniques will meet barriers
to adoption, as they often venture into unexplored
territory of computing, but they’re necessary to push
the envelope.

Acknowledgments
We thank the US Department of Energy, Exascale Com-
puting Project (ECP); the National Science Foundation;
and the Russian Federation for sponsoring this work.

References
1. G.E. Moore, “Cramming More Components onto

Integrated Circuits,” Electronics, vol. 38, no. 8, 1965,
pp. 114–117.

2. G.E. Moore, “Progress in Digital Integrated Electronics,”
IEEE Int’l Electronic Devices Meeting, 1975, pp. 11–13.

3. R.H. Dennard et al., “Design of Ion-Implanted MOS-
FET’s with Very Small Physical Dimensions,” IEEE J.
Solid-State Circuits, vol. 5, 1974, pp. 256–268.

4. J.G. Koomey et al., “Implications of Historical
Trends in the Electrical Efficiency of Computing,”
IEEE Annals of the History of Computing, vol. 33, no.
3, 2010, pp. 46–54.

5. S. Anthony, “Beyond Silicon: IBM Unveils World’s
First 7nm Chip,” Ars Technica, 9 July 2015; https://
arstechnica.com/gadgets/2015/07/ibm-unveils-
industrys-first-7nm-chip-moving-beyond-silicon.

6. S. Anthony, “Intel Forges Ahead to 10nm, Will Move
Away from Silicon at 7nm,” Ars Technica, 23 Feb.
2015; https://arstechnica.com/gadgets/2015/02/
intel-forges-ahead-to-10nm-will-move-away-from-
silicon-at-7nm/.

7. M. Bohr et al., “Moore’s Law Challenges below
10nm: Technology, Design and Economic Implica-
tions,” Int’ l Solid-State Circuits Conf., 2016, p. 1.

8. A. Danowitz et al., “CPU DB: Recording Microprocessor
History,” ACM Queue, vol. 10, no. 4, 2012, pp. 55–63.

9. M. Baboulin et al., “Dense Symmetric Indefinite
Factorization on GPU Accelerated Architectures,”
Proc. 11th Int’ l Conf. Parallel Processing and Applied
Mathematics, 2015, pp. 86–95.

10. D.S. Parker, Random Butterfly Transformations with
Applications in Computational Linear Algebra, tech.

www.computer.org/cise 61

report CSD-950023, Computer Science Dept., Univ.
California, Los Angeles, 1995.

11. M. Baboulin et al., “Accelerating Linear System So-
lutions Using Randomization Techniques,” ACM
Trans. Mathematical Software, vol. 39, no. 2, 2013,
pp. 8:1–8:13.

12. R. Barrett et al., “Algorithmic Bombardment
for the Iterative Solution of Linear Systems: A
Poly-iterative Approach,” J. Computational and
Applied Mathematics, vol. 74, nos. 1–2, 1996,
pp. 91–109.

13. A. Duran et al., “OMPSS: A Proposal for Program-
ming Heterogeneous Multi-core Architectures,” Paral-
lel Processing Letters, vol. 21, no. 2, 2011, pp. 173–193.

14. “OpenMP Application Program Interface,” v. 4.0,
OpenMP Architecture Rev. Board, July 2013.

15. G. Ballard et al., “Minimizing Communication
in Numerical Linear Algebra,” SIAM J. Matrix
Analysis and Applications, vol. 32, no. 3, 2011,
pp. 866–901.

16. M. Mohiyuddin et al., “Minimizing Communication
in Sparse Matrix Solvers,” Proc. Conf. High Perfor-
mance Computing Networking, Storage and Analysis,
2009, p. 36.

17. J. Demmel et al., “Communication-Optimal Par-
allel and Sequential QR and LU Factorizations,”
SIAM J. Scientific Computing, vol. 34, no. 1, 2012,
pp. A209–A239.

18. G. Ballard et al., “Communication Lower Bounds
and Optimal Algorithms for Numerical Linear Al-
gebra,” Acta Numerica, vol. 23, 2014, pp. 1–155.

19. M. Baboulin et al., “Accelerating Scientific Com-
putations with Mixed Precision Algorithms,”
Computer Physics Comm., vol. 180, no. 12, 2009,
pp. 2526–2533.

20. X.S. Li et al., “Design, Implementation and Test-
ing of Extended and Mixed Precision BLAS,” ACM
Trans. Mathematical Software, vol. 28, no. 2, 2002,
pp. 152–205.

21. K. Diethelm, “The Limits of Reproducibility in Nu-
merical Simulation,” Computing in Science & Eng.,
vol. 14, no. 1, 2012, pp. 64–72.

22. G. Bosilca et al., “Algorithm-Based Fault Toler-
ance Applied to High Performance Computing,” J.
Parallel and Distributed Computing, vol. 69, no. 4,
2009, pp. 410–416.

23. H. Avron, P. Maymounkov, and S. Toledo,
“Blendenpik: Supercharging LAPACK’s Least
Squares Solver,” SIAM J. Scientific Computing, vol.
32, no. 3, pp. 1217–1236.

24. H. Abelson and G.J. Sussman, Structure and Inter-
pretation of Computer Programs, 2nd ed., MIT Press,
1996.

25. N. Halko, P.-G. Martinsson, and J.A. Tropp, “Find-
ing Structure with Randomness: Probabilistic Al-
gorithms for Constructing Approximate Matrix
Decompositions,” SIAM Rev., vol. 53, no. 2, 2011,
pp. 217–288.

26. M.W. Mahoney, “Randomized Algorithms for Ma-
trices and Data,” Foundations and Trends in Machine
Learning, vol. 3, no. 3, 2011, pp. 123–224.

27. R.C. Whaley, A. Petitet, and J.J. Dongarra, “Auto-
mated Empirical Optimizations of Software and the
ATLAS Project,” Parallel Computing, vol. 27, no. 1,
2001, pp. 3–35.

28. M.P. Schel et al., “SPIRAL: A Generator for Platform-
Adapted Libraries of Signal Processing Algorithms,”
Int’ l J. High Performance Computing Applications,
vol. 18, no. 1, 2004, pp. 21–45.

Jack Dongarra holds appointments at the University
of Tennessee Knoxville, Oak Ridge National Labora-
tory, and the University of Manchester. He special-
izes in numerical algorithms in linear algebra, parallel
computing, use of advanced computer architectures,
programming methodology, and tools for parallel
computers. Dongarra was awarded the IEEE Sid Fern-
bach Award in 2004, received the first IEEE Medal of
Excellence in Scalable Computing in 2008, the first
SIAM Special Interest Group on Supercomputing’s
award for Career Achievement in 2010, and the IEEE
IPDPS 2011 Charles Babbage Award. He’s a Fellow of
the AAAS, ACM, IEEE, and SIAM, and a member of
the National Academy of Engineering. Contact him at
dongarra@icl.utk.edu.

Stanimire Tomov is a research director and adjunct as-
sistant professor at the University of Tennessee Knox-
ville. His research interests are in parallel algorithms,
numerical analysis, and HPC. Tomov received a PhD in
mathematics from Texas A&M University. Contact him
at tomov@icl.utk.edu.

Piotr Luszczek is a research director at the University
of Tennessee Knoxville’s Innovative Computing Labo-
ratory. His core research is centered on performance
modeling and evaluation. Contact him at luszczek@
icl.utk.edu.

Jakub Kurzak is a research director in the Innovative
Computing Laboratory, Department of Electrical Engi-
neering and Computer Science, University of Tennessee
Knoxville. His research interests are in HPC with mul-
ticore and accelerators. Kurzak received a PhD in com-
puter science from the University of Houston. Contact
him at Kurzak@icl.utk.edu.

HIGH-PERFORMANCE COMPUTING

62 May/June 2017

Mark Gates is a research scientist in the Innovative
Computing Laboratory at the University of Tennessee
Knoxville, where his interests lie in algorithms for linear
algebra on multicore and accelerator-based computers.
Gates received a PhD in computer science from the Uni-
versity of Illinois at Urbana-Champaign. Contact him at
mgates3@icl.utk.edu.

Ichitaro Yamazaki is a research scientist in the Innova-
tive Computing Laboratory at the University of Tennes-
see Knoxville, where his interests lie in HPC, especially
for linear algebra and scientifi c computing. Yamazaki
received a PhD in computer science from the Univer-
sity of California, Davis. Contact him at iyamazak@
icl.utk.edu.

Hartwig Anzt is a research scientist in the Innovative
Computing Laboratory at the University of Tennessee
Knoxville. His research interests include simulation al-
gorithms, sparse linear algebra, hardware-optimized nu-
merics for GPU-accelerated platforms, and power-aware
computing. Anzt received a PhD in mathematics from
the Karlsruhe Institute of Technology. Contact him at
hanzt@icl.utk.edu.

Azzam Haidar is a research scientist in the Innovative
Computing Laboratory at the University of Tennessee
Knoxville. His research interests focus on the devel-

opment and implementation of parallel linear algebra
routines for scalable distributed multicore and hetero-
geneous architectures for large-scale dense and sparse
problems. Haidar received a PhD from CERFACS,
France. Contact him at haidar@icl.utk.edu.

Ahmad Abdelfattah is a postdoctoral research associate in
the Innovative Computing Laboratory at the University
of Tennessee Knoxville. His research interests include
high-performance numerical linear algebra on GPUs and
emerging architectures, including both dense and sparse
problems. Abdelfattah received a PhD in computer sci-
ence from King Abdullah University of Science and
Technology. Contact him at ahmad@icl.utk.edu.

Read your subscriptions through the
myCS publications portal at http://
mycs.computer.org.

Recognizing Excellence in High-Performance Computing

Nominations are Solicited for the

SEYMOUR CRAY, SIDNEY FERNBACH & KEN KENNEDY AWARDS

Deadline: 1 July 2017
All nomination details available at

awards.computer.org

SEYMOUR CRAY COMPUTER ENGINEERING AWARD
Established in late 1997 in memory of Seymour Cray, the Seymour Cray Award is awarded to recog-
nize innovative contributions to high-performance computing systems that best exemplify the creative
spirit demonstrated by Seymour Cray. The award consists of a crystal memento and honorarium of
US$10,000. This award requires 3 endorsements.

ACM/IEEE-CS KEN KENNEDY AWARD
This award was established in memory of Ken Kennedy, the founder of Rice University’s nationally
ranked computer science program and one of the world’s foremost experts on high- performance
computing. A certificate and US$5,000 honorarium are awarded jointly by the ACM and the
IEEE Computer Society for outstanding contributions to programmability or productivity in high-
performance computing together with significant community service or mentoring contributions. This
award requires 2 endorsements.

SIDNEY FERNBACH MEMORIAL AWARD
Established in 1992 by the Board of Governors of the IEEE Computer Society, this award honors the
memory of the late Dr. Sidney Fernbach, one of the pioneers on the development and application of
high- performance computers for the solution of large computational problems. The award, which con-
sists of a certificate and a US$2,000 honorarium, is presented annually to an individual for “an out-
standing contribution in the application of high-performance computers using innovative approach-
es.” This award requires 3 endorsements.

