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On the eve of exascale computing, traditional wisdom no longer applies: high-performance com-
puting is gone as we know it. A range of new algorithmic techniques is emerging in the context of 
exascale computing, many of which defy the common wisdom of HPC and are considered un-
orthodox but could turn out to be a necessity in the near future.

S
cience priorities lead to scientific models, and models are implemented in the form of algorithms. 
Algorithm selection is based on various criteria, such as accuracy, verification, convergence, perfor-
mance, parallelism, and scalability. Models and associated algorithms aren’t selected in isolation 
but must be evaluated in the context of the existing computer hardware environment. Algorithms 

that perform well on one type of computer hardware could become obsolete on newer hardware, so selec-
tions must be made carefully and may change over time. 

Future trends in high-performance computing (HPC) can be seen in the US Department of En-
ergy CORAL (Collaboration of Oak Ridge, Argonne, and Livermore) initiative, which is aimed at 
deploying “pre-exascale” machines with performance in the range of hundreds of petaFLOPS. The 
list of challenges facing the algorithm developer includes targeting massive parallelism, reaching mil-
lions of cores, dealing with hybrid architectures (including GPU accelerators), and managing complex 
memory hierarchies, all with smaller amounts of faster 3D-stacked memories and larger amounts of 
traditional memories. 
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In the sections to follow, we first describe the 
particular challenges posed by new hardware tech-
nologies and then present a selection of emerging, 
often unorthodox, algorithmic techniques to deal 
with these challenges. 

Moore’s Law and Dennard Scaling
Moore’s law1 is the most often quoted dictum by 
which the silicon revolution took over our lives. 
Never mind that it was meant to last only until 
1975 and was later adjusted to fit a slower (but still 
exponential) growth rate.2 In essence, the law ob-
serves exponential growth of transistors in every 
new generation of integrated circuits and projects 
it into the following decade. While Gordon Moore 
himself suggested that this would allow higher 
speed for the same power (per unit area), it was 
Robert Dennard and colleagues3 who showed how 
the observed speed of the chips would increase ex-
ponentially. Confluence of these trends gave us the 
proverbial “free lunch”: write any code and wait for 
the Moore/Dennard duo to speed it up. The joy-
ride ended abruptly around 2005, when the per-
square-inch heat emitted by chips was on track to 
exceed that of a rocket nozzle—and soon after, the 
surface of the sun—due to the effect of increasing 
main-clock frequency.4 

This ended Dennard scaling, but Moore’s law 
progression continues, albeit in a somewhat abated 
form: the shrink periods in chip feature size are 
ever longer, each one requiring an even bigger in-
vestment in terms of science, innovation, engineer-
ing, and money. Instead of simply faster processors, 
we get processors with more cores. If we don’t get 
faster results on the new generation of hardware, 
we can now blame only our coding skills: we didn’t 
provide for the increased parallelism. Going be-
yond the outgoing breed of commercial 22-nm 
chips and the established 14-nm technology, IBM  
announced a successful research result by produc-
ing a 7-nm germanium integrated circuit.5 Fol-
lowing suit, Intel plans to move away from silicon 
for the 7-nm manufacturing process.6,7 Nobody is 
really surprised, because if the feature size shrinks 
by half in two years, then we have only about a  
decade before we reach the lattice parameter for 
silicon, which is 0.543 nm. 

Clock Variation
For a long time, CPU speed has been associated 
with frequency.8 But that trend has now gained a 
new meaning due to the flexible treatment of clock 
frequency in modern CPUs and GPUs. Frequency 

scaling originated in laptop CPUs; desktop and 
server CPUs, on the other hand, featured technolo-
gies such as Turbo Boost and Turbo Core. All of 
them allowed CPU frequency to be adjusted by ex-
ternal factors—usually, system load and available 
battery charge. The constant increases in clock fre-
quencies came to an end when Dennard scaling no 
longer continued. The changes in CPU/GPU fre-
quency continue, however, due to various factors. 
High frequency still bodes well for performance, 
and modern chips are capable of recognizing their 
workload to the point that when the demand for 
computing capacity increases, the clock revs up to 
complete the task at hand. 

But there’s a limit to this technique because the 
thermal bounds can’t be breached without the chip 
suffering irreversible damage. So, as soon as the tem-
perature sensors detect dangerous levels of dissipated 
heat, the frequency is scaled appropriately, regard-
less of workload status. A less obvious application 
for this technique pertains to regulation of the con-
sumed power. It’s hard to imagine why a processor 
would need to regulate its power consumption when 
thinking small. At extreme scales, the number of 
processing cores already reaches over a million cores. 
A sudden increase in application workload is mag-
nified accordingly, which results in a sudden surge 
of demand for electric power unlike anything that 
power houses have ever faced. The usual fluctua-
tions in electric power consumption have to do with 
time of day and are a result of changes in human 
activity. Over decades, these could be accounted for, 
although blackouts can still occur when too many 
people turn on their air conditioning in a short win-
dow of time. In comparison, CPUs and GPUs can 
reduce their power consumption when idle by nearly 
90 percent, from a few hundred watts to a few tens. 
If only 10,000 processors changed their state from 
idle to fully loaded, the electrical power demand 
would change by nearly 1 MW, and not just for a 
particular time of day, as is the case for rush-hour 
traffic and evening TV watching. 

Power houses can’t cope with such swings in 
demand and heavily penalize offending sites, and 
supercomputer operators institute policies that help 
manage workload variation and associated power 
fluctuations, often through power capping and 
frequency adjustments. It then becomes hard to 
precisely answer the question, how fast is a CPU 
or GPU in my supercomputer? It depends on the 
temperature—when machine room cooling works 
well, processors can increase their frequency be-
yond the base level and thus magnify the entire 
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supercomputer’s performance. But if the electrical 
power is at a premium and the center can’t draw 
any more from the power house, power capping 
will be in effect, and thus frequency will stay at the 
baseline level or even drop below it to counteract 
a potential surge and ensuing penalties. In short, 
the clock variation is here to stay, and as a conse-
quence, not all cycles are made equal. 

More Ops ≠ More Time
Complexity theory clearly dictates that fewer op-
erations, especially at a lower asymptotic bound, 
are preferable for optimal execution time. In high-
performance and scientific computing, a similar 
guideline used to apply when every cycle and ev-
ery instruction were at a premium. But this was 
the case in the single-core world, and it has already 
changed in the multicore era. Worse yet, it’s fur-
ther exacerbated in the case of hardware accel-
erators with total compute power exceeding 1,000 
GFLOPs in double precision and bandwidth top-
ping at 200 Gbytes/s. An order of magnitude more 
operations have to be performed for every byte that 
arrives from the main memory. Computation is fast 
only when it happens in processor registers—even 
the fastest cache needs a handful of clock cycles to 
deliver data items.

Compared to anything else, and especially to 
the main memory that holds the majority of data 
structures, operations on registers are virtually free, 
with data movement and synchronization being the 
essential factors contributing to algorithm speed. 
Projections for future machines only exacerbate the 
current data movement crisis. Even with the newly 
introduced stacked memory that promises a mind- 
boggling 1 Tbytes/s of bandwidth, compute devices 
will eventually achieve performance levels in excess 
of 10 TFLOPs, and the bandwidth/compute imbal-
ance will become even more pronounced. In such 
an environment, we must abandon the notion that 
knowing the number of operations for an algorithm 
is a good indicator of its ultimate performance. 
Rather, we have to look critically at the kind of op-
erations that are required. And above all, we have to 
focus on data movement, synchronization points, 
and understanding the nature of interaction be-
tween threads and processes in the system to make 
sure that they can proceed on their own for as long 
as possible without costly communication. 

In addition, we have to examine the amount of 
data that the algorithm accesses and choose a dif-
ferent one that can do away with fewer accesses—
we call this access-averse methodology. We already 

have meaningful examples of a substantial payoff 
from this new approach throughout the numerical 
linear algebra field. We see it in eigenvalue and sin-
gular value computations, where algorithms with 
double the amount of floating-point work are al-
ready faster on current systems and will only get 
faster moving forward with technological advances 
in hardware. We also see this in sparse matrix com-
putations that use subspace projection and improve 
accuracy through extra work while being overall 
faster than any other contending algorithm. While 
in some way it might be burdensome to rewrite old 
software and reinvent old algorithms, we ultimately  
stand to benefit from the new approaches that 
technological progress requires us to invent. 

Responsibly Reckless
The ultimate goal for high-performance numeri-
cal libraries, which has also driven their progress 
over the years, is to deliver accurate results in the 
fastest possible time. Accuracy by itself, however, 
is often associated with extra computational effort 
and therefore is at odds with speed. Maintaining 
an accuracy versus speed standoff for traditional 
algorithms on today’s and tomorrow’s emerging 
extreme computing systems is becoming increas-
ingly challenging. Indeed, applications from big 
data analytics to machine learning, in which “sen-
sors” produce extreme amounts of data (including 
redundant or faulty data), require various optimi-
zations to sift through and find a “best” solution 
in a limited time period. However, this push also 
motivates the development of algorithms that we 
call responsibly reckless, algorithms that compute 
quickly while still being responsible for accuracy 
through nontraditional, innovative approaches. 

Examples are numerous, including mixed-
precision and randomization algorithms, as well as 
some of the already mentioned methods that trade-
off more flops to gain in overall time to solution. 
To illustrate the concept, let’s concentrate on the 
general enough problem of solving a linear system 
of equations: 

Ax = b.

The traditional approach is to use a Gaussian 
elimination (GE) with partial pivoting, which in 
matrix form is known as LU factorization with 
partial pivoting. In this approach, A is decomposed 
so that PA = LU, where L and U are lower and up-
per triangular matrices, respectively, and P is a 
permutation matrix. This is achieved by reducing 
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A, column by column, to the upper triangular U 
using elementary transformations (swapping rows, 
scaling a row, and adding a scaled row to another 
row) that form the lower triangular L and the per-
mutation P matrices. To reduce a current column 
to zeros below the diagonal, we can use the row 
going through the diagonal—this results in an LU 
factorization without pivoting, which is numeri-
cally unstable. With partial pivoting we select the 
row that has the largest absolute value in the cur-
rent column, swap it with the diagonal row, and 
use it in the reduction. This strategy is sufficient in 
practice to adequately reduce round-off error. If A 
is of size n × n, the computation is of order O(n3) 
and the pivoting adds an O(n2) complexity. While 
this is a lower-order term, the challenges and com-
munication overhead due to pivoting have become 
critical on new architectures, especially on GPUs 
in variations when A is symmetric and indefinite.9

GE stability is strongly related to the growth 
factor that measures how large the entries of the 
matrix become in the GE process. As in many nu-
merical algorithms, the choice of a pivoting strategy 
is the result of a tradeoff between stability concerns 
and performance. In respect to this, a good GE  
algorithm should minimize the growth factor (to 
provide numerical stability) and the amount of piv-
oting (to avoid penalizing performance). An exam-
ple of a responsibly reckless approach here is based 
on a randomization technique where the original 
matrix A is transformed/preconditioned into a suf-
ficiently “random” matrix so that, with a probabil-
ity close to 1, pivoting isn’t needed. The technique 
was initially described by Douglas Parker10 and 
extended later for dense linear systems, either gen-
eral11 or symmetric indefinite.9 The randomization 
is referred to as random butterfly transformation 
(RBT)11 and consists of a multiplicative precondi-
tioning UTAV, where U and V are chosen among a 
particular class of random matrices called recursive 
butterfly matrices. Then, GE with no pivoting is 
performed on the matrix UTAV and, to solve Ax = b,  
we solve (UTAV )y = UTb, followed by x = Vy.

Bombardment
With the growing level of parallelism in computer 
architectures, global reductions are increasingly 
becoming the performance-limiting factor. At the 
same time, the number of (parallel) floating-point 
operations in an algorithm can be expected to be-
come less relevant for the execution time, which 
promotes the idea of adding extra operations in 
favor of improved algorithm properties. Follow-

ing this idea, the concept of algorithmic bombard-
ment12 was proposed nearly 20 years ago for the 
iterative solution of large, sparse linear systems. 

The traditional approach for the iterative solu-
tion process is to select one iterative method and 
apply it to the problem. In particular, Krylov sub-
space solvers have worked well for a large range of 
problems, but for a problem with unknown charac-
teristics, it’s often difficult to identify the method 
of choice. The large variety of Krylov solvers to 
choose from also makes the selection difficult. The 
distinct methods differ in how they deal with the 
initial guess the solver is started with, as well as the 
linear problem’s characteristics, such as eigenvalue 
distribution. Depending on this, an iterative solver 
can converge faster or slower—or in the worst case, 
even break down.

The concept of algorithmic bombardment ad-
dresses this challenge in a sledgehammer fashion: 
instead of addressing the problem with a specific 
iteration method, a poly-algorithm attack applies 
a preselected set of solvers simultaneously. The 
key idea is to successively drop the methods that 
break down and benefit from the fast convergence 
of the most suitable method included in the set. 
Although the poly-iterative approach has some 
overhead, it has shown to be very efficient, in par-
ticular for a set of similar Krylov-based methods. 
The structural similarity of these solvers helps keep 
a low number of synchronization points: the cen-
tral (and computationally most expensive) building 
block of all Krylov methods is a sparse matrix vec-
tor product needed for the generation of the Krylov 
subspace. Algorithms are also composed of inher-
ently parallel vector updates and global reduction 
operations that require synchronization. Multiply-
ing the sparse matrix with a set of vectors instead of 
a single vector usually incurs little computational 
overhead, with no additional synchronizations. 
Similarly, the simultaneous reduction of multiple 
vectors is insignificantly more expensive than a sin-
gle reduction on parallel architectures. Finally, the 
update of a set of vectors being part of the distinct 
algorithms might not incur any overhead, as it can 
often be hidden with the global reduction phases 
guiding the algorithm’s execution time. 

Consequently, interleaving a set of Krylov 
methods by generating the distinct subspaces via a 
blocked sparse matrix vector product—and gather-
ing the reduction phases such that a low number of 
synchronization points is maintained—typically re-
sults in a small runtime overhead compared to run-
ning only one iterative solver. But while the outcome 
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when choosing one method is unknown, the poly-
iterative approach not only increases the chance of 
one method converging but also provides the best 
convergence rate of the solvers included in the set. 

The poly-iterative approach offers additional 
benefits for fault-tolerance aspects. The increasing 
complexity of hardware platforms undoubtedly re-
sults in a higher rate of soft errors such as bit flips. 
These can degrade an iterative solver’s convergence 
or, in the worst case, even result in the breakdown 
of an algorithm. For the algorithmic bombardment 
approach, it’s less crucial if one method of the set 
breaks down due to numerical instability or soft- 
error: the respective solver is simply dropped, and 
the iterations continue with one less solver. Obvi-
ously, this doesn’t make the poly-iterative approach 
bit-flip proof, but it enhances the chance of suc-
cessful termination compared to a single iteration 
method.

Dataflow Scheduling
Dataflow scheduling is a very old idea that offers 
numerous benefits to traditional multithreading 
and message passing, but it somehow never really 
went mainstream. Until now. Part of the problem 
is cultural, as dataflow programming takes some 
control away from the programmer by forcing a 
more declarative, rather than imperative, style of 
coding. You need to let the system decide what 
work is executed where and at what time. With 
the prospect of billion-way parallelism looming 
on the HPC horizon, there simply is no other 
choice. 

The multicore revolution of the 2000s brought 
the idea back and put it in the mainstream. One 
of the first task-based multithreading systems 
that received attention in multicore times was the 
Cilk language, originally developed at MIT in 
the 1990s and mostly offering nested parallelism, 
heavily geared toward recursive algorithms. About 
the same time, the idea of superscalar scheduling 
gained traction, based on scheduling tasks by re-
solving data hazards in real time, in a similar way 
that superscalar processors dynamically schedule 
instructions. 

The appeal of the superscalar model is its sim-
plicity. You basically present the compiler with se-
rial code, where tasks are, in principle, functions. 
They have to be side-effect-free (no accesses to 
global variables and so on). Then you have to mark 
the parameters as input, output, or in-out. Based 
on this information, at runtime, the task graph is 
built, and tasks are scheduled in parallel to mul-

tiple cores by resolving data dependencies and haz-
ards: read after write, write after read, write after 
write. This is a powerful idea that’s simple to grasp 
and allows for scheduling complex workloads to 
many cores. 

This technique was pioneered by a project from 
the Barcelona Supercomputer Center, which went 
through multiple names as its hardware target was 
changing: GridSs, CellSs, SMPSs, OMPSs, and 
StarSs, where “Ss” stands for superscalar.13 A similar 
development was the StarPU project from INRIA, 
which applied the same methodology to systems 
with GPU accelerators. It was named for its capa-
bility to schedule work to CPUs and GPUs, there-
fore *PU. One scheduler (SuerGlue) was developed 
at Uppsala University, and we developed our own 
(Quark) at the University of Tennessee Knoxville 
(UTK), implementing the Plasma numerical library 
on top of it. At some point, all these projects received 
extensions for scheduling in distributed memory. 

Nothing accelerates adoption of a new para-
digm more than standardization. Luckily, the 
OpenMP community has been swiftly moving 
forward with standardization of new scheduling 
techniques for multicores. First, the OpenMP 3.0 
standard adopted the Cilk scheduling model, then 
the OpenMP 4.0 standard adopted the supersca-
lar scheduling model.14 Not without significance 
is the fact that the GNU compiler suite was also 
quick to follow with high-quality implementations 
of the new extensions. The results of our initial in-
vestigation indicate that at this point there are no 
roadblocks to fully migrate the Plasma library from 
Quark to OpenMP, which, in our minds, speaks 
highly of the standard, as Plasma is a fully featured 
numerical library. 

Sadly, the situation is worse in programming 
distributed-memory machines, where the MPI+X 
model is currently the predominant solution 
(meaning MPI plus OpenMP, POSIX threads, 
CUDA, OpenCL, OpenACC, and so on). While 
the superscalar model can be extended to support 
distributed memory, the paradigm is inherently 
nonscalable to very large core numbers, due to the 
serial bottleneck of unrolling the task graph at run-
time. Numerous projects have tackled the problem, 
including Charm++ from the University of Illinois, 
Urbana-Champaign, Swift from Argonne, Paral-
leX from Louisiana State University (now Indiana 
State University), just to name a few, and we joined 
the fight with the PaRSEC and Pulsar systems de-
veloped at UTK. However, while dataflow sched-
uling seems inevitable at exascale, there’s currently 
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no paradigm on the radar that could serve as a  
basis for standardization. 

Communication Avoiding
The cost of executing software can be modeled as 
a function of its computation and communication 
costs (such as in terms of required cycle time or 
energy consumption). For instance, the computa-
tion cost could be modeled based on the number of 
required FLOPS, while the communication could 
include synchronization and data transfer between 
parallel processing units, as well as data movement 
through levels of the local memory hierarchy. On 
modern computers, communication has become 
significantly more expensive compared to com-
putation. To address this hardware trend, several 
communication-avoiding (CA) algorithms have 
been developed by redesigning existing algorithms 
to obtain the minimum communication cost for 
solving a particular problem.15,16 

For example, significant efforts have been 
made to redesign dense matrix factorization al-
gorithms to obtain the minimum communica-
tion costs, such as LU and QR factorization algo-
rithms,17 with traditional algorithms communicat-
ing to factorize each column of the dense matrix. 
In contrast, to reduce the number of required mes-
sages in a parallel environment via a CA algorithm, 
each parallel processing unit would factorize its 
local submatrix, followed by a global reduction 
of the local factors to compute the final factoriza-
tion. A similar idea can be applied to reduce the 
data movement through the local memory hierar-
chy by splitting the matrix into submatrices that 
would fit in the faster memory. These algorithms 
typically increase the computational costs and nu-
merical bounds by a small factor (such as a factor 
of log(np), where np is the number of processing 
units), but they can greatly improve performance 
when communication dominates the costs of com-
puting the factorization. 

There have also been significant efforts18 to 
avoid communication in the iterative subspace pro-
jection methods for solving sparse matrix problems 
(such as solving a linear system of equations or an 
eigenvalue or singular value problem). At each iter-
ation of a traditional algorithm, a new basis vector 
of the projection subspace is generated, which re-
quires communication. To reduce communication, 
CA algorithms generate a set of s basis vectors at 
once. Although the total computation or the com-
munication volume of the iterations can increase 
depending on the surface-to-volume ratio of the 

local sparse submatrix, CA algorithms reduce the 
communication latency by a factor of s. Special 
care must be taken to maintain the solver’s numeri-
cal stability, but emerging efforts18 aim to improve 
the robustness of CA algorithms in practice (such 
as deflation and preconditioning to improve the 
convergence rates). 

Mixed Precision
Traditionally, most scientific and engineering com-
puting has been done in double-precision 64-bit 
arithmetic, with the expected ratio of single- 
precision (32-bit) to double-precision performance 
at 2× in favor of single. In the mid-2000s, interest in  
using lower precision spiked due to infiltration of 
the HPC domain by devices meant for consumer 
electronics and embedded systems, which offered 
outstanding performance in single precision and 
inferior performance in double. Along came the 
realization that, for some applications, single-
precision accuracy is more than enough, while for 
others, the bulk of the work can be done in single 
precision, and lost digits can be cheaply restored by 
applying precision recovery techniques. Now that 
hybrid architectures, including manycore copro-
cessors such as the Intel Xeon Phi, and hardware 
accelerators, such as GPUs from Nvidia and AMD,  
are an integral part of the HPC landscape, it only 
seems natural to reap the benefits of mixed-precision  
computing.

The turmoil started with the Sony/Toshiba/
IBM Cell processor, which initially offered 14× 
more performance in single precision than in double 
precision (later improved to 2× in the PowerXCell  
architecture). When the Cell lost momentum, GPU  
computing gained traction, with Nvidia leading 
the charge. In Nvidia products, native support for 
double precision started with the Tesla microarchi-
tecture, and the performance ratio fluctuated from 
architecture to architecture, being 8:1 in Tesla, 2:1 
in Fermi, and 3:1 in Kepler. The current Maxwell 
line of cards is likely to never receive fast double-
precision units and will simply be bypassed for 
HPC applications in favor of moving on to Pas-
cal, which comes with another twist. While its 
double-precision specs aren’t yet known, it will 
provide very fast half-precision (16-bit) operations 
for applications in deep learning. In the meantime, 
AMD followed suit and introduced double preci-
sion in the R600 architecture. For AMD chips, the 
single-to-double performance ratio has been hover-
ing consistently around 5:1, going as high as 4:1 in 
the Tahiti chips.
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Some numerical computing applications are 
so well conditioned that single precision is all they 
need. A prominent example is wave scattering for 
oil exploration and computing radar signatures. 
Computational lithography is another example. 
Successful efforts have been made to explore single 
precision in harder problems, such as molecular dy-
namics simulations. In this case, a class of problems 
can be solved by mixing different precisions, such 
that most of the work is done in lower or faster pre-
cision, while a smaller amount of work is done in 
higher or slower precision, to recover the lost digits. 
Well-conditioned systems of linear equations can 
be solved in this manner by using the technique of 
iterative refinement.19 

Hardware-supported higher precision can easily  
be emulated in software—for instance, a quadruple- 
precision number can be represented by two  
double-precision numbers, one storing the expo-
nent and the higher-order bits of the mantissa, and 
the other storing the lower-order bits of the man-
tissa. While the exponent is limited to the double-
precision exponent, a quadruple-precision mantissa 
can be represented. The cost is on the order of 10 
lower-precision instructions to implement a single 
higher-precision instruction, but when applied ju-
diciously to some parts of the algorithm, the tech-
nique opens the door for lowering precision in other  
parts of the algorithm.20 

Future state-of-the-art numerical software 
should be able mix and match different precisions 
in different stages to achieve the required accuracy 
while maximizing performance. 

Reproducibility
Exact reproducibility of computed results is a de-
sirable feature and a common requirement of sci-
entific software. It aides development to be able to 
make certain changes in the code without altering 
the end result. The landscape of extreme comput-
ing, with extreme levels of parallelism and dynamic  
scheduling, makes exact reproducibility prohibi-
tively expensive. 

One fundamental cause of nonreproducibility 
is that floating-point arithmetic isn’t associative, so 
in general, 

(a + b) + c ≠ a + (b + c),

but rather there’s a small round-off difference be-
tween the two results. Any time there’s a similar re-
duction—such as a dot product or norm—runtime 
choices affect the results.21 Using a different num-

ber of processors will cause a different grouping, 
yielding a small difference in the result. Tuning the  
block size for optimal performance, for example, 
affects the result. Because of SIMD vector units 
in today’s processors, even changing the mem-
ory alignment of data can change how data is 
associated. 

Moving a computation from a CPU to an ac-
celerator, such as a GPU or Xeon Phi, likewise 
changes results as the computation is reorganized 
to best fit the hardware characteristics. Dynami-
cally scheduled algorithms could choose where to 
do a computation—on a CPU or on an accelera-
tor—based on runtime load balancing. 

Often, these cause only small changes in the 
values. When a decision is based on intermediate 
values, however, the end result can be significant-
ly different. In LU decomposition, for instance, 
the largest element in a column is chosen as the  
pivot. If two elements are close in magnitude, a 
small perturbation can cause a different pivot to  
be chosen, so the resulting permutation P and LU 
factors are completely different, while still satisfy-
ing PA = LU. When used to solve a system, Ax = 
b, the result is still within some tolerance of the 
correct x. A similar phenomenon occurs in the sign 
choice when computing Householder reflectors, 
hence affecting QR decomposition, eigenvalue, 
and singular-value problems. 

Another source of nonreproducibility is application- 
based fault tolerance (ABFT),22 which incurs less 
overhead compared to traditional checkpoint-restart 
fault tolerance. While checkpoint-restart restores 
the exact contents of memory after a fault, ABFT 
recomputes missing data based on checksums. The 
recomputation inherently incurs round-off errors 
different than the original computation. 

Some algorithms also include random data, 
such as a random initial starting guess in itera-
tive algorithms, random sampling in Monte Carlo 
methods, or RBT. Although repeatable pseudo-
random generators produce reproducible results for 
debugging, it isn’t practical or desirable to always 
use the same pseudorandom sequence in produc-
tion runs.

Some of these changes can be controlled, for 
instance, by ensuring that data is aligned, using 
the same number of processors, and using the 
same block size. Other causes of nonreproduc-
ibility, however, are based on runtime behavior, 
such as load balancing or node failures, and thus 
are inherent in achieving optimal performance at 
extreme scale. 
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Randomization
The HPC’s future hints at an explosive growth in 
the volume of data and a relatively dismal growth 
in the capabilities of communication and IO  
systems. Under such conditions, it becomes  
increasingly important to find algorithms that 
communicate less and perform IO operations even 
less than that. For an important set of problems in 
numerical computing, a class of algorithms emerges  
that seem to be an answer to these challenges: ran-
domization algorithms. 

Most of us associate randomized algorithms 
with Monte Carlo methods and view them as a des-
perate and final resort because they’re highly sen-
sitive to the random-number generator and often 
produce outputs with low and uncertain accuracy. 
Recently, new kinds of randomized algorithms 
have been constructed for a range of problems that 
play a central role in scientific computing and data 
analysis, including least-squares problems and ma-
trix approximation problems, such as truncated 
singular value decomposition and rank-revealing 
QR decomposition. These new methods are insen-
sitive to the quality of randomness and produce 
highly accurate results. At the same time, they offer 
two major advantages, speed and simplicity, as in 
many cases the randomized algorithm is the fastest 
option, the simplest, or both. 

Randomized methods solve these problems by 
operating on a sketch of the input matrix instead of 
the matrix itself. In the case of random sampling, 
the sketch consists of a small number of carefully 
selected and rescaled matrix columns or rows (for 
random projections, the sketch consists of a small 
number of linear combinations of the matrix col-
umns or rows). In other words, these methods 
identify a subspace that captures most of the ac-
tion of the matrix. The matrix is then compressed 
to this subspace, either explicitly or implicitly, and 
a deterministic algorithm is applied to the reduced 
matrix to compute the solution. 

Some people in the numerical computing com-
munity have embraced the new algorithms. For in-
stance, in their article on the Blendenpick algorithm 
for the least-squares approximation, Haim Avron, 
Petar Maymounkov, and Sivan Toledo stated that 
“randomization is arguably the most exciting and 
innovative idea to have hit linear algebra in a long 
time.”23 Others grapple with the probabilistic aspect 
of the new methods, which, unlike their determinis-
tic counterparts, introduce a nonzero probability of 
failure. This failure probability, however, is a user-
controllable parameter and can be rendered negli-

gible if necessary. The impracticality of demanding 
constant, complete determinism is captured in a 
quote from Harold Abelson and Gerald Sussman: 
“In testing primality of very large numbers chosen at 
random, the chance of stumbling upon a value that 
fools the Fermat test is less than the chance that cos-
mic radiation will cause the computer to make an 
error in carrying out a ‘correct’ algorithm.”24

The new classes of random sampling and pro-
jection algorithms offer numerous advantages when 
dealing with large datasets coming from both sci-
entific (astrophysics, genomics, climate modeling) 
and commercial applications (social networks, in-
formation retrieval systems, financial transactions). 
In many cases, randomized algorithms beat their 
classical counterparts in terms of accuracy, speed, 
and robustness. They utilize modern computer ar-
chitectures better by exposing higher levels of par-
allelism than traditional numerical methods. At the  
same time, they often produce more numerically 
robust solvers by introducing implicit regulariza-
tion. While not a silver bullet, a careful application 
of randomization ideas can lead to powerful frame-
works for a range of matrix problems and open the 
path for using exascale resources to tackle big data 
challenges.25,26

Autotuning
Although Moore’s law is still in effect, the multi-
core revolution has initiated a processor design 
trend of moving away from architectural fea-
tures that don’t directly contribute to processing 
throughput. This means a preference toward shal-
low pipelines with in-order execution and cutting 
down on branch prediction and speculative execu-
tion. On top of that, virtually all modern architec-
tures require some form of vectorization to achieve 
top performance, whether it be short-vector SIMD 
(single instruction, multiple data) extensions of 
CPU cores or SIMT (single instruction, multiple 
thread) pipelines of GPU accelerators. With the 
landscape of future HPC populated with complex, 
hybrid vector architectures, automated software 
tuning could provide a path toward portable per-
formance without heroic programming efforts. 

This dramatically affects the way that fast 
computational kernels are written. Take as an ex-
ample fast GPU implementations of the famed ma-
trix multiplication or its derivative, the convolution 
operation in deep learning neural networks. Most 
loops are tiled, their boundaries fixed, and entire 
loop nests are completely unrolled into large blocks 
of straight-line code. The remainders of the iteration  
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space, nondivisible by block sizes, are treated 
with cleanup codes. Most of the time, vectoriza-
tion is explicit (for example, SIMD using vector 
intrinsics, SIMT using CUDA or OpenCL), and 
so is data motion (loading scratchpad memories, 
prefetching). This style of code allows for pipelin-
ing of floating-point instructions, hiding the la-
tency of load and store instructions, minimizing 
integer and address arithmetic, and minimizing 
branching. At the same time, a kernel optimized to 
that extent for one device is no longer optimal for 
another. One solution is to hire ninja programmers 
who recode or retune each kernel from one device 
to another. Another is to write kernels where tiling 
sizes and other parameters are tunable and then ap-
ply the process of automated software tuning. It’s 
worth mentioning that today’s devices have hardware 
switches that can be controlled in software—for ex-
ample, Nvidia GPUs have software-controllable L1/
shared memory size and software-controllable width 
of shared memory banks. It’s only natural to discover 
the best settings in the process, otherwise known as 
autotuning. 

Automated software tuning was pioneered in 
projects such as Atlas27 and Spiral,28 is the objective 
of numerous academic projects, and is also prac-
ticed by hardware vendors providing libraries such 
as BLAS for their devices. The basic premise is to 
explore a search space and find the best performers.  
The search space can be defined by a set of tunable 
parameters, code transformations, implementation 
variants, hardware switches, and so on, and can 
then be pruned by applying a set of constraints that 
eliminate obvious underperformers. Finally, it can 
be searched to find the winners. Exhaustive search, 
steepest descent methods, and genetic algorithms 
are all valid approaches.

Another issue is application-level tuning, in 
which the objective is to maximize performance 
in a parallel run, executed by a large number of 
devices (processors or accelerators). The first prob-
lem is granularity—the fact that, in most cases, 
the level of parallelism can be increased at the cost 
of a drop in serial performance of each device in 
the mix and at the cost of a hike in communica-
tion. The second problem is the tradeoff between 
load balance and communication, that is, the fact 
that the former can be improved at the expense of 
the latter. Unfortunately, making repeated runs to 
find the optimum is a much less attractive option 
due to the resources required at large scale. Right 
now, the solution seems to lie in modeling and 
simulation. 

Moving toward the exascale challenge will re-
quire rethinking the entire HPC software 

stack, as the size, complexity, and heterogeneity of 
new machines render the existing software in-
frastructure obsolete. To the rescue come new al-
gorithmic techniques, such as CA algorithms, 
mixed-precision algorithms, and randomization 
methods, as well as new programming paradigms, 
such as dataflow task scheduling, and performance 
engineering techniques, such as automatic software 
tuning. Many of these techniques will meet barriers 
to adoption, as they often venture into unexplored 
territory of computing, but they’re necessary to push 
the envelope. 
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