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Summary

We propose two acceleration methods, namely, Fused and Gram, for reducing

out-of-core data access when performing randomized singular value decomposition

(RSVD) on graphics processing units (GPUs). Out-of-core data here are data that are

too large to fit into the GPU memory at once. Both methods accelerate GPU-enabled

RSVD using the following three schemes: (1) a highly tuned general matrix-matrix mul-

tiplication (GEMM) scheme for processing out-of-core data on GPUs; (2) a data-access

reduction scheme based on one-dimensional data partition; and (3) a first-in, first-out

scheme that reduces CPU-GPU data transfer using the reverse iteration. The Fused

method further reduces the amount of out-of-core data access by merging two GEMM

operations into a single operation. By contrast, the Gram method reduces both in-core

and out-of-core data access by explicitly forming the Gram matrix. According to our

experimental results, the Fused and Gram methods improved the RSVD performance

up to 1.7× and 5.2×, respectively, compared with a straightforward method that

deploys schemes (1) and (2) on the GPU. In addition, we present a case study of deploy-

ing the Gram method for accelerating robust principal component analysis, a convex

optimization problem in machine learning.

K E Y W O R D S
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1 INTRODUCTION

Singular value decomposition (SVD)1 is a matrix approximation algorithm that finds two orthogonal matrices U and V and a diagonal matrix 𝚺 of an

input matrix A such that A = UΣV⊤, where A can be approximated with matrices smaller than itself by truncating U, V, and 𝚺. Studies on improving

the performance and numerical stability of SVD algorithms have been ongoing ever since its advent,2-4 and successfully applied to various fields,

such as bioinformatics,5,6 physics,7,8 and machine learning.9-11 In particular, SVD of dense tall-skinny matrices, whose the height (m rows) is at least

one magnitude larger than the width (n columns), is of great interest to researchers in computer vision,12 image compression,13 facial recognition,14

and data analysis.15

Recently, randomized SVD (RSVD) algorithms16-18 have been proposed to further accelerate SVD by exploiting the low-rank structure inherent

in matrix data. Compared with classical deterministic algorithms,1 randomized algorithms have been shown to access the input data less number
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of times, while maintaining the desirable accuracy of the approximation.16-18 RSVD is typically build on random sampling18,19 and power iteration

methods.18,20,21 The sampling method constructs a subspace of the input matrix, which reduces dimension. The power method takes powers of

A (ie, A⊤A) to increase the approximation accuracy. Both underlying methods can be implemented using general matrix-matrix multiplication

(GEMM) routines, whereas general matrix-vector multiplication (GEMV)22 is required for deterministic SVD computation. GEMM is more suitable

for modern parallel computers, where it achieves 20 to 40 times higher flop/s than GEMV.22,23

While matrix approximation, such as SVD, has been made efficient based on randomization methods, modern computing architectures, such

as the use of graphics processing unit (GPU) accelerators,24 enable the development of even faster algorithms by taking the advantage of parallel

computing. Nevertheless, there are a few major challenges that prevent matrix approximation algorithms to fully benefit from the modern com-

puting architectures. First, large matrix data may not fit into the GPU memory due to its limited capacity. Second, communication across distinct

memory hierarchies or networks often constitutes a performance bottleneck23,25 due to the increasing gap between arithmetic and communication

performance.26,27

The above challenges have been addressed using the following two strategies: communication-avoiding algorithms28,29 reduce the communi-

cation of intermediate data during computation, whereas pass-efficient algorithms19,30 save the memory bandwidth by reducing the number of

passes over data. As for the multipass RSVD,18 target data is passed over 2q + 1 times to attain a high-accuracy approximation, where q denotes the

number of iterations in the power method.18,21 By contrast, single-pass algorithms31,32 access the target data in just one pass. However, single-pass

algorithms include iterations to construct a sketch,18,31,32 which have data dependency that avoids parallelization required by the modern computing

architectures. Furthermore, there exists an accuracy-performance tradeoff in single-pass algorithms.31,32 Due to this accuracy issue, multipass RSVD

is preferred in convergence-sensitive applications such as robust principal component analysis (RPCA), where the noise and low-rank component

in input data are typically separated in an iterative manner.33

In this study, we focus on a multi-pass RSVD algorithm proposed by Martinsson et al,16,18 which has a higher accuracy than single-pass algo-

rithms according to solid error-bound analysis. We extend this algorithm so that large tall-skinny matrices can be rapidly decomposed using a

divide-and-conquer method that reduces out-of-core data access on a CPU-GPU heterogeneous system. Out-of-core data access here involves

CPU-GPU data transfer in our target CPU-GPU system, where the GPU is regarded as the computing core. By contrast, in-core data (ie, data on

the GPU memory) can be rapidly accessed without additional CPU-GPU data transfer. Compared with the previous in-core algorithms,34,35 which

made the assumption that input and intermediate data can be fully stored in the GPU memory, we consider an RSVD algorithm at scale, where the

matrices include more than 106 entries. Our out-of-core approach relaxes the limitation on the data size by allowing the data to be stored in both

the CPU and GPU memories.

The main contributions of this research include:

• Highly tuned, out-of-core GEMM with theoretical performance model.

Since GEMM is a building block of RSVD algorithms, we extensively tuned the GEMM operation with theoretical performance analysis

based on an extension of the roofline model.36 The extended model shows that GPU-accelerated out-of-core GEMM is bandwidth bound for

tall-skinny matrices. In addition, we present experimental results where our out-of-core scheme achieved higher performance than previous

GEMM schemes.

• Two out-of-core RSVD methods, namely, Fused and Gram.

Both methods are based on three common schemes: (1) the abovementioned out-of-core GEMM scheme; (2) a data-access reduction

scheme based on one-dimensional (1D) data partitioning; and (3) a first-in, first-out (FIFO) scheme that reduces CPU-GPU data transfer by

reverse iteration. The Fused method is a communication-avoiding algorithm because the method merges GEMM operations to reduce the

amount of the CPU-GPU data transfer (ie, out-of-core data access). By contrast, the Gram method is a pass-efficient algorithm because

the method explicitly computes the Gram matrix to reduce the number of data passes (ie, both in-core and out-of-core data access) from

2q + 1 to 3.

• Case study with a practical application.

We apply the Gram method to nuclear norm minimization in an RPCA algorithm that heavily relies on SVD computation. We found that our

GPU-based implementation provided 23.3× faster RSVD computation compared with that of a CPU-based implementation, doubling the RPCA

performance for the video background subtraction.

Our source code, which will be included in the MAGMA package,37 is freely available at http://www-ppl.ist.osaka-u.ac.jp/research/code/.

The rest of this article is organized as follows. Section 2 provides an overview of related studies. Section 3 presents a technical background

regarding RSVD. Section 4 outlines the proposed highly tuned out-of-core GEMM scheme with its theoretical performance analysis and preliminary

evaluation. Section 5 details our proposed methods constructed over the underlying GEMM scheme. Section 6 compares and contrasts the proposed

methods with the existing methods. Section 7 describes the case study with an RPCA application. Conclusions and prospects for future work are

provided in Section 8.

http://www-ppl.ist.osaka-u.ac.jp/research/code/
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2 RELATED WORK

In this section, we brief the related work regarding deterministic SVD algorithms, randomized algorithms, and GPU-accelerated randomized

algorithms.

2.1 Deterministic SVD algorithms

In 1965, Golub and Kahan2 proposed the first stable SVD algorithm for computers using a bidiagonlization method. EISPACK38 first implemented

the bidiagonlization method in Fortran. EISPACK was designed to run on a single-core CPU and was replaced by LINPACK,39 which first implemented

the SVD algorithm with basic linear algebra subprogram (BLAS) interface. The performance of LINPACK was limited by the BLAS1 implementation

and benefited little from multicore architectures.23 LAPACK40 redesigned the SVD algorithm to use BLAS3 routines wherever possible to improve

the performance on the multicore CPUs. Recently, a two-stage bidiagonal reduction method has been proposed to adapt SVD to new computer

architectures like GPU accelerators.22

Theoretically, deterministic SVD of a matrix A can be calculated with its Gram matrix A⊤A, which is a well-known method.41 However, forming

the Gram matrix is usually avoided due to its high computational cost in linear algebra packages like LAPACK40 or MAGMA.37 In this work, we apply

this idea to out-of-core RSVD computation; we introduce a method which explicitly forms the Gram matrix to reduce the number of data passes,

that is, the amount of in-core and out-of-core data access.

2.2 Randomized algorithms

Randomized algorithms4,16-18,21,42,43 have been proposed to reduce the time and space complexities required for the approximation of

high-dimensional data. The efficiency of such algorithms in tackling large-scale data has led to an increased interest from the high-performance

computing community.

In general, randomized algorithms have a typical computation flow. First, they construct a subspace of the input data using random sampling.

Computation is then performed only on the sampled subspace to reduce the costs of computation, communication, and storage. Randomized

algorithms are popular in the field of big data analytics, where large quantities of data are missing or contain noise. There is a strong demand

for low-precision approximation that is useful for the restoration of the entire data and elimination of irrelevant data hindering data analysis.

Randomized algorithms typically employ one of the two sampling methods: namely, uniform and nonuniform sampling methods.

The uniform sampling method uses independent and identically distributed random numbers as the entries of sampling matrices, which are then

multiplied with the target matrix. This method is also called random projection; it has a strong relative-error bound and widely used in randomized

matrix factorization.18 The major objective of random projection is to project the high-dimensional data onto a low-dimensional subspace by exploit-

ing the low-rank characteristics of the data.18 Deterministic decomposition is then performed on this subspace, and the decomposed results are

projected back to form the full factorization. However, uniform sampling has relatively higher computational cost compared with that of nonuniform

sampling. In particular, given a matrix A ∈ R
m×n and sampling matrix Q ∈ R

n×𝓁 , it takes (mn𝓁) time to compute the sampled matrix AQ.

By contrast, the nonuniform sampling method constructs a subspace by selecting a certain set of vectors from the target data. Given a matrix

A ∈ R
m×n, an importance sampling distribution19 of the input matrices is first computed to perform the selection. The distribution and selection have

the time complexity of (mn), which is lower than the overhead of the uniform sampling mentioned above. Moreover, nonuniform sampling has a

higher accuracy compared with that of uniform sampling. Hence, our base RSVD algorithm16,18 deploys uniform sampling.

2.3 GPU-accelerated randomized algorithms

Randomized algorithms have been implemented on GPUs to achieve further acceleration. For example, low-rank approximations of dense matrices

were computed and evaluated with a truncated SVD44 and a truncated QR factorization with column-pivoting.45 The RSVDPACK library35 contains

a set of randomized algorithms for computing low-rank matrix approximations on a single GPU. These studies assume that the matrix data are small

enough to fit into the GPU memory. Therefore, the maximum data size was limited by the capacity of the GPU memory, which is an order of magnitude

smaller than that of the CPU memory.

As for large matrices whose data size exceeds the capacity of the GPU memory, traditional matrix factorization algorithms have been investi-

gated for more than a decade.37,46 For example, divide-and-conquer methods have been proposed to perform out-of-core LU,47 QR, or Cholesky

factorization.48,49 Similarly, underlying BLAS routines have been extended to deal with large matrices. To the best of our knowledge, cuBLAS-XT50 is

the first library, implementing the out-of-core BLAS routines. BLASX51 deploys a least recently used cache management scheme to implement the

BLAS routines for out-of-core matrices, which aims at reducing the amount of the data transfer between the CPU and GPU.
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While GPUs are widely used as accelerators for memory- or compute-intensive applications, GPU programming is still not easy partly due to

its complex memory hierarchy levels. In particular, application developers are required to manually manage CPU and GPU memories to gain a high

performance of GPU-based systems. To deal with this issue, NVIDIA introduced Unified Memory,52 that realizes an integrated memory space avail-

able from both the CPU and GPU. This capability frees application developers from explicitly managing data movement between the CPU and GPU.

Furthermore, Unified Memory accepts large data that may exceed the capacity of the GPU memory.

3 RSVD ALGORITHM

Algorithm 1 lists a pseudocode of the RSVD algorithm.16,18 Given a matrix A ∈ R
m×n, the target rank k, oversampling parameter o, and power iteration

count q, the algorithm outputs matrices𝚺, U, and V, where𝚺 is the diagonal matrix whose diagonal entries approximate the k-largest singular values

of A, and U and V approximate the corresponding left and right singular vectors, respectively. The oversampling parameter o is added to the target

rank k to guarantee the approximation accuracy for matrices with a slow singular value decay.

Algorithm 1. Multipass RSVD. Function orth(⋅) orthogonalizes the column vectors while functions qr(⋅) and svd(⋅) return the QR factorization and

deterministic SVD of a matrix, respectively. We use Σ̃(1 ∶ k,1 ∶ k) and Ũ (∶,1 ∶ k) to denote the leading k × k submatrix of Σ̃ and the submatrix

consisting of the first k columns of Ũ, respectively.

Input : matrix A ∈ R
m×n, target rank k, oversampling parameter o and power iteration count q.

Output: Σ, U and V such that A ≈ UΣV⊤with k × k diagonal Σ, and orthonormal column vectors U and∼ V.

1 Generate a random matrix Q ∼  (0,1)n×𝓁 ,where 𝓁 = k + o.

2 for i = 1 to q do

3 P = AQ;
4 P = orth(P) ; // if needed

5 Q = A⊤P;
6 Q = orth(Q)

7 end

8 P = AQ;
9
[
P, B

]
= qr (P) ;

10
[
Ũ, Σ̃, Ṽ

]
= svd (B) ;

11 Σ = Σ̃(1 ∶ k,1 ∶ k);
12 U = PŨ (∶,1 ∶ k) ;
13 V = QṼ (∶,1 ∶ k) ;

First, the RSVD algorithm generates the basis vectors P and Q that approximate the range and domain of the matrix A, respectively. The power

iteration method in lines 2 to 7 improves the approximation accuracy. During these q power iterations, basis vectors of P and Q are orthogonalized

to maintain the numerical stability. After the power iterations, QR factorization is performed on P in line 9 such that the upper triangular matrix B

is the projected matrix of dimension 𝓁 × 𝓁 (ie, B = PT AQ). In other words, a small matrix B can be created by GEMM when matrix A is low-rank, that

is, rank(A) = k ≪ min(m, n). This small matrix B is useful for revealing the SVD of the original matrix A at low cost. The SVD of B is then computed by

deterministic SVD in line 10. Finally, the left singular vector Ũ and right singular vector Ṽ are projected back onto P and Q to generate the left and

right singular vectors of A in lines 12 and 13, respectively.

The orthogonalizations in lines 4 and 6 of Algorithm 1 ensure that the different columns of P or Q converge to different dominant singular

vectors. However, the original RSVD algorithm16 was later improved to skip the orthogonalization of P.18 Halko et al18 used a diverse collection of

real applications to illustrate the accuracy and stability of RSVD with skipping the orthogonalization of P. Their test cases included the adaptive

range approximation in physics, the graph Laplacian approximation in image processing, the face recognition in machine learning, and so on. Similar

studies12,53 were presented based on the improved algorithm.16 Thus, the orthogonalization of P can be skipped depending on the accuracy required

by the target application; this improvement is widely accepted for practical applications.

Algorithm 1 indicates that RSVD is dominated by GEMM computation in lines 3 and 5 with access to the large tall-skinny matrix A, which we

assume not to fit in the GPU memory. Therefore, a straightforward solution deploys the out-of-core GEMM routines that offload heavy computa-

tion to GPUs. In this case, the amount of CPU-GPU data transfer increases linearly with the number q of power iterations because A is accessed

2q + 1 times in Algorithm 1. Thus, RSVD solvers for large data rely on out-of-core GEMM, whose performance fluctuates drastically according to

divide-and-conquer strategies. In the following section, we provide theoretical analysis and empirical results to reveal that out-of-core RSVD is

bandwidth bound requiring a data-access reduction scheme to minimize the amount of data transfer between the CPU and GPU.
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4 GPU-ACCELERATED OUT-OF-CORE GEMM

In this section, we first extend the roofline model36 to investigate the upper bound of the GPU-accelerated out-of-core GEMM performance. We

then propose a 1D partition scheme for tall-skinny matrices and compare our GEMM implementation with several existing implementations.

The following analysis and experiments were conducted in double precision using an experimental system equipped with two Intel 8-core Xeon

Silver 4110 CPUs and two NVIDIA Tesla V100 (Volta) GPUs.24 These CPUs had 96 GB of DDR4-2133 main memory and provided a double preci-

sion peak performance of 0.67 Tflop/s in total. Each GPU had 16 GB of GPU memory with theoretical peak performance of 7.0 Tflop/s in double

precision. Each GPU was connected to the CPU via a PCIe 3.0 link allowing bidirectional transfer between the CPU and the GPU. In our system, we

observed 6.9 Tflop/s for in-core GEMM computation, and the effective transfer bandwidth per PCIe link was 13.1 and 12.8 GB/s for CPU-to-GPU

and GPU-to-CPU, respectively. The CPU and GPU implementations used Intel MKL 2018.0.354 and cuBLAS 9.2,50 respectively, for processing in-core

GEMM operations. In addition, we used MAGMA 2.437 and LAPACK 3.740 to evaluate the approximation accuracy and initialize multithreaded

computation.

4.1 Performance model

We now propose a performance model based on the roofline model36 to investigate the upper bound of the GPU-accelerated out-of-core GEMM

performance. The roofline model is useful for locating the performance bottleneck, that is, either arithmetic or memory operations, which limits the

entire performance of linear algebra algorithms.55,56 Considering the roofline model, the attainable performance in flop/s can be defined as

T = min

(
F
D

B, C
)
, (1)

where F denotes the number of floating point operations, D denotes the amount of memory access, B denotes the peak memory bandwidth and C

denotes the peak computational performance of the target hardware. The term F∕D is called operational intensity, which represents the ratio of

floating point operations to total data access. The operational intensity is the key algorithmic factor that determines attainable flop/s, whereas the

remaining parameters B and C depend on the target hardware.

In the following discussion, we consider DGEMM, C = 𝛼AB + 𝛽C, to investigate the performance of the tall-skinny GEMM, P = AQ, where P ∈
R

m×𝓁 , A ∈ R
m×n (m ≫ n)and Q ∈ R

n×𝓁 , which appears in the power iteration in line 3 of Algorithm 1. Since our focus is on the tall-skinny A, we assume

that (1) the large matrix A must be partitioned into smaller blocks to be processed with a divide-and-conquer strategy, and (2) the small projection

matrix Q fits into the GPU memory and hence is broadcasted to all GPUs. In addition, we assume that (3) the input and output matrices exist in the

CPU memory; (4) m, n, and𝓁 are multiplies of the block dimension b to simplify the discussion; and (5) the DGEMM implementation sends the output

matrix C to the GPU even if 𝛽 = 0.

To illustrate the impact of matrix shapes on the out-of-core GEMM performance, we substituted the operational intensity with the matrix size

parameters such as m, n, and 𝓁. The flop F of GEMM was fixed to 2mn𝓁 for double precision GEMM. By contrast, the memory access cost D was

interpreted as CPU-GPU data transfer cost to consider the out-of-core execution on the GPU. Furthermore, the cost D was appropriately selected

according to the two data partition schemes as follows.

1. Row-wise 1D partition scheme with block dimension b (Figure 2). According to this scheme, m∕b blocks in total must be computed for the

matrix P. Each block requires b × n entries in A and n × 𝓁 entries in Q to compute all entries in the block. Providing Q can be reused on the GPU,

and
(∑m∕b

j=1
bn

)
+ n𝓁 + m𝓁 = mn + n𝓁 + m𝓁 entries are transferred from the CPU to GPU and m𝓁 entries for the opposite direction. Assum-

ing bidirectional transfer between the CPU and GPU, the data transfer cost can be calculated as D = mn + n𝓁 + m𝓁. Therefore, the attainable

performance T1 for the 1D partition scheme can be written as

T1 = min

(
2mn𝓁

mn + n𝓁 + m𝓁
B, C

)
. (2)

2. 2D partition scheme with the block dimension b × b, where b is the block size. According to this scheme, m𝓁∕b2 blocks in total must be computed

for the matrix P. Each block requires b × n entries in A and n × b entries in Q to compute all entries in the block. Providing Q can be reused on the

GPU, and
(∑m𝓁∕b2

j=1
bn

)
+ n𝓁 + m𝓁 = mn𝓁∕b + n𝓁 + m𝓁 entries are transferred from the CPU to GPU and m𝓁 entries for the opposite direction.

Assuming the bidirectional transfer scheme mentioned above, the data transfer cost can be calculated as D = mn𝓁∕b + n𝓁 + m𝓁. The attainable

performance T2 for the 2D partition scheme can be written as

T2 = min

(
2mn𝓁

mn𝓁∕b + n𝓁 + m𝓁
B, C

)
. (3)
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(A) (B) (C) (D)

F I G U R E 1 Performance upper bound of GPU-accelerated out-of-core GEMM: P = AQ, where P ∈ R
m×𝓁 , A ∈ R

m×n, and Q ∈ R
n×𝓁 . Row-wise

one-dimensional partitioning results for, A, square (𝓁 = n) and B, tall-skinny matrices Q (𝓁 = n∕10). Two-dimensional partition results for, C, square
(𝓁 = n) and D, tall-skinny matrices Q (𝓁 = n∕10). Hardware specific parameters were set for the Tesla V100 GPU: B = 13 GB/s and C = 7 Tflop/s.

Both partition schemes used the block size b of 1024, which was the default setup of cuBLAS-XT.50 GEMM, general matrix-matrix multiplication;
GPU, graphics processing unit

Equations (2) and (3) can be further simplified by considering the shape of the matrix Q. In more detail, the parameter 𝓁 can be eliminated for

the following two cases: (1) square matrix (𝓁 = n) and (2) tall-skinny matrix (𝓁 = n∕10, for example). After this elimination, Equations (2) and (3) can

be rewritten as functions of m and n. Consequently, the performance upper bound can be shown on a 2D heatmap, where the vertical and horizontal

axes are the matrix dimensions m and n of A, respectively (Figure 1).

Figure 1 clearly demonstrates that a higher performance illustrated as a red area can be expected only with the 1D partition scheme. With

respect to the 2D partition scheme shown in Figure 1C,D, the performance upper bounds are strictly limited for both the square and tall-skinny

shapes of the matrix Q with less than 1 Tflop/s due to the narrow bandwidth of the CPU-GPU data transfer. The same limitation can also be found

for the 1D partition scheme; however, the maximum performance reached up to 7 Tflop/s in this case. Another remarkable point here is that the

shape of the matrix A also strongly impacts the performance upper bound if the matrix Q is tall-skinny, which is demonstrated by a larger blue area

in Figure 1B compared with that in Figure 1A. Thus, the transfer bandwidth between the CPU and GPU limits the GPU-accelerated out-of-core

GEMM performance for the tall-skinny A (m ≫ n), which frequently appears in big data analytics.

In summary, we make the following observations about the extended performance model.

• Row-wise 1D data partition is a promising solution for the GEMM operations of large tall-skinny matrices because this solution minimizes the

amount of CPU-GPU data transfer.

• 2D data partition inevitably increases the amount of CPU-GPU data transfer limiting the out-of-core GEMM performance. The performance will

deteriorate, especially for the tall-skinny GEMM operations, which are the main focus of our research.

4.2 Row-wise 1D partition scheme for out-of-core GEMM

We propose a row-wise 1D partition scheme for the two GEMM operations applied to tall-skinny matrices in lines 3 and 5 of Algorithm 1. We use

row-wise partition rather than column-wise partition for the following two reasons.

• Lower data transfer cost. The outer-product update of the matrix P results in a large amount of CPU-GPU data transfer for each GEMM computa-

tion if the tall-skinny A is partitioned into 1D column blocks. Furthermore, the column-wise partition requires multiple buffers and a complicated

synchronization mechanism to accumulate the updates from different blocks. By contrast, the row-wise partition allows per-block GEMM oper-

ations to be data-independent without the race condition. This asynchronous property enables the pipelined execution of partitioned blocks,

where data transfers are efficiently overlapped with GEMM computation. In more detail, software pipelining can be implemented using compute

unified device architecture (CUDA) streams.52

• Higher GEMM performance. GEMM routines generally run faster for square matrices rather than tall-skinny matrices. Compared with the

column-wise partition, the row-wise partition generates square-like blocks, which are useful for maximizing the performance of per-block GEMM

operations.

Figure 2 illustrates how we apply our 1D partition scheme to the GEMM operations in the RSVD algorithm. As shown in Figure 2A, we partition

the tall-skinny matrices A and P into blocks for the first GEMM, P = AQ. Given the block size b, this partition scheme generates m∕b blocks for each

A and P, each having dimensions of b × n and b × 𝓁, respectively. The small n × 𝓁 matrix Q is initialized on the CPU and then broadcasted to all GPUs

to allow them to independently call the cuBLAS routines for applying the in-core GEMM operations to blocks. The second GEMM, Q = A⊤P, is based
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F I G U R E 2 Proposed row-wise one-dimensional
partition scheme for tall-skinny GEMM. A, P = AQ (line 3
of Algorithm 1), where A is partitioned into blocks and Q is
broadcasted among GPUs. B, Q = A⊤P, where Q is

accumulated by reduction. Blocks are assigned to CUDA
streams52 in a round-robin fashion (ie, block-cyclic
distribution as illustrated with different colors). Because P
is computed in a block-wise manner, the GPU is allowed to
store the part of P. GEMM, general matrix-matrix

multiplication; GPU, graphics processing unit

(A) (B)

F I G U R E 3 Out-of-core GEMM performance with
different block sizes b on a single Tesla V100 GPU.
Measured results for, A, small (𝓁 = n = 1000) and B, large
square matrices (𝓁 = n = 5000). The maximum block size
(b = max) indicates the performance without data

partition. A multithreaded CPU version was also evaluated
on two 8-core CPUs. Note that the upper-bound line is
curved because the horizontal axis of our extended model
is the height of matrix A, which is different from that (ie,

the operational intensity) of the original roofline model.
GEMM, general matrix-matrix multiplication; GPU,
graphics processing unit

(A) (B)

on an outer-product of Q. Similar to the process shown in Figure 2A, we broadcast Q to all GPUs for processing blocks in parallel (Figure 2B). A

reduction of small Q is followed after finishing all GEMM operations.

As mentioned above, GEMM is not universally efficient for tall-skinny matrices. This low efficiency is due to the computation of tall-skinny

GEMM, which is closer to GEMV (BLAS2 routines) than GEMM (BLAS3 routines). The BLAS2 routines are less efficient than the BLAS3 routines

due to vector accesses that degrade cache hit rate on both the multicore CPU and GPU; BLAS3 routines are 20 to 40 times more efficient than

BLAS2 routines.22,23 Regarding the in-core performance of tall-skinny GEMM, Chen et al57 achieved 1.1 to 3.0× speedups over cuBLAS for tall-skinny

matrices with up to 16 columns. Their GEMM solution can be easily integrated into our RSVD solver, but the maximum number of columns is limited

by 16, mainly due to the limitation on computational resources, such as register files.

In the following discussion, we use the submatrix notation1,18 to denote the block matrix; each block of A is expressed as A(J,∶) ∈ R
b×n, where J

is an ordered set of indices defined as J =
[
jb, jb + 1,… , jb + b − 1

]
for the jth block (j ≥ 0).

4.3 Performance tuning and comparison of out-of-core GEMM

We first tuned our out-of-core GEMM implementation with respect to the block size b. Figure 3 illustrates the measured performance with dif-

ferent block sizes, ranging from 512 to 8192. The block size was also maximized to measure the performance without data partition; due to the

lack of data partition, we failed to execute large matrices of m ≥ 2 × 105 entries. Similarly, we measured the performance of a multithreaded CPU

implementation for reference. All except one of the setups allocated matrices in the pinned CPU memory.52

Figure 3 demonstrates that the pinned memory was faster than the pageable memory; the effective bandwidth from the pinned memory to the

GPU memory was 1.7 times higher than that from the pageable memory. Hence, we allocated matrices in the pinned memory for the rest of the

experiments. We also observed that the performance for the maximum block size (b = max) was significantly degraded due to the lack of overlapped

execution; there were no partitioned blocks that could be processed in the pipeline. Therefore, data partition schemes are necessary to maximize

the performance of the out-of-core GEMM operations.

As mentioned in Section 4, the in-core GEMM computation ran at 6.9 Tflop/s, which was close to the theoretical peak of 7.0 Tflop/s. With respect

to the out-of-core GEMM computation, Figure 3 demonstrates that there is some margin between the theoretical upper bound and the measured

results. This margin occurred due to data partition, which applies GEMM operations to the partitioned blocks. In other words, partitioned blocks
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F I G U R E 4 Performance comparison of the out-of-core GEMM implementations on a single Tesla V100 GPU. Results with different shapes
for the matrix Q: A, tall-skinny (n = 5000,𝓁 = 500), B, short-wide (n = 500,𝓁 = 5000), C, small square (𝓁 = n = 1000), and D, large square
(𝓁 = n = 5000). BLASX is a high-level library that hides specific data partition and memory allocation methods. GEMM, general matrix-matrix
multiplication; GPU, graphics processing unit

are not sufficient large to maximize the effective performance; in-core GEMM runs without such data partition. However, small blocks are required

to overlap CPU-GPU data transfer with GPU computation.

As for the block size, a tradeoff point must be found to maximize the performance of 1D partition scheme. For small block sizes of b ≤ 2048,

we observed only 8 to 11 GB/s of CPU-GPU transfer bandwidth and 8.3 to 9.3 Gflop/s of arithmetic performance, because the parallelism in each

small block was not sufficient to achieve the maximum efficiency on the GPU. On the other hand, the maximum block size b = max resulted in a poor

performance due to inefficient execution of the pipeline. Weighing the tradeoffs here, we selected b = 4096 for the following experiments.

We now compare and contrast the performance of out-of-core GEMM implementation against that obtained with previous out-of-core GEMM

implementations: cuBLAS-XT50 and BLASX.51 Figure 4 illustrates the performance comparison when using a single Tesla V100 GPU. Among these

implementations, the proposed GEMM was the fastest in most cases. Note that cuBLAS-XT was evaluated with the following three setups: (1) 2D

partition with pinned memory (default); (2) 1D partition with pinned memory; and (3) 1D partition with Unified Memory. As for 1D partition, we set

the block size as b = n, which enforced the row-wise 1D block partition. Among these setups, the highest performance was obtained when using the

second setup, that is, 1D partition with pinned memory. The default setup failed to achieve high performance for the out-of-core GEMM operations;

this behavior is consistent with Equations (2) and (3), which imply that 2D partition transfers more entries than 1D partition. Therefore, excessive

data transfers saturated the CPU-GPU bandwidth, resulting in a lower performance. While enforced 1D partition significantly increased the per-

formance, there was still a performance gap compared with that of the proposed GEMM. The advantage of the proposed GEMM implementation

comes from manual broadcast of the small matrix Q to GPUs (Figure 2A), which reduces the amount of CPU-GPU data transfer for all block GEMM

operations. We obtained similar results for another GEMM operation in the power method (Q = A⊤P in Figure 2B).

With Unified Memory, we failed to increase the performance for larger m even with 1D partition. We speculate that Unified Memory failed to

efficiently deal with the complicated memory access pattern. It is not easy to automate CPU-GPU data transfer without explicitly managing the

memory. Finally, BLASX performed stably for all setups (Figure 4). However, the maximum matrix size was limited to m ≤ 2 × 106 entries; matrices

larger than the maximum size resulted in an execution failure without any error message.

We also evaluated the speedups of the considered implementations on two Tesla V100 GPUs (Figure 5). For each implementation, we used

the same implementation as the baseline, which ran on a single V100 GPU. All implementations except Unified Memory demonstrated increased

speedups as m grows; the speedups reached around 1.8× for m ≥ 2 × 104 demonstrating a scalable performance on two GPUs. By contrast, small

matrices of m < 1 × 104 resulted in low speedups, due to the overheads of GPU initialization that took up around 30% of the overall execution time.

Similarly, cuBLAS-XT with Unified Memory degraded the GEMM performance when using two GPUs.

5 PROPOSED OUT-OF-CORE RSVD METHODS

We first describe the basic scheme that uses 1D partition for out-of-core RSVD computation. We then present a FIFO scheme that reduces the

amount of CPU-GPU data transfer by employing the reverse iteration. We further elaborate on two methods, namely, Fused and Gram, which are

our main contribution to this work. Both the Fused and Gram methods are built on the basic and FIFO schemes.

Table 1 summarizes the computational and communication costs of all proposed variations. This table considers only the power method, which

is the main contribution of the article. As shown in Table 1, our main concern is to reduce the amount of CPU-GPU data transfer, which limits the

performance of out-of-core computation on the GPU. We also show a pipelined mechanism to overlap kernel execution with data transfer. As for

kernel optimization, our approach is to deploy vendor's optimized GEMM kernels with tuned execution setups, as investigated in Section 4.3.
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F I G U R E 5 Speedup of the out-of-core GEMM implementations on two Tesla V100 GPUs. Results with different shapes for the matrix Q. A,
tall-skinny (n = 5000,𝓁 = 500), B, short-wide (n = 500,𝓁 = 5000), C, small square (𝓁 = n = 1000), and D, large square (𝓁 = n = 5000). For each
implementation, we executed the same implementation on a single GPU to compute the speedup. GEMM, general matrix-matrix multiplication;

GPU, graphics processing unit

TA B L E 1 Comparison of the proposed methods in terms of computational cost, the number of data passes, and CPU-GPU data transfer cost

Method F: # of floating point operations # of data passes D: CPU-GPU data transfer cost

Basic (data-access reduction) (2q + 1)mn𝓁 2q + 1 (2q + 1)mn

FIFO (reverse iteration) (2q + 1)mn𝓁 2q + 1 < (2q + 1)mn

Fused (2q + 1)mn𝓁 2q + 1 < (q + 1)mn

Gram mn2 + qn2𝓁 + mn𝓁 3 < 2mn

Note: The number of data passes and CPU-GPU data transfer cost correspond to in-core access cost and out-of-core access cost, respectively. We consider

matrix A to evaluate the number of data passes. Both the Fused and Gram methods adopt the FIFO scheme to reduce the CPU-GPU data transfer cost.

Abbreviations: FIFO, first-in, first-out; GPU, graphics processing unit.

5.1 Basic and FIFO schemes for reducing out-of-core data access

As summarized in Table 1, a straightforward divide-and-conquer implementation of RSVD passes A for 2q + 1 times with the proposed 1D scheme,

where A and P are partitioned, whereas Q is broadcasted to all GPUs (Figure 2). The QR factorization of P in line 9 of Algorithm 1 is computed using

Cholesky factorization58 shown in Algorithm 2. In Algorithm 2, the GEMM operation at line 4 can be processed by calling the GEMM function, such

as the cublasDgemm() kernel of the cuBLAS library. Algorithm 2 only transfers small 𝓁 × 𝓁 matrices B and R between the CPU and GPU because

Algorithm 1 stores the input matrix P in the GPU memory (at line 8) before processing the QR factorization. Note that the data transfers are omitted

in Algorithm 2 to simplify its description. Both SVD and QR procedures in line 10 of Algorithm 1 and line 6 of Algorithm 2, respectively, can be

implemented using the standard LAPACK routines. We denote this implementation as the basic scheme.

Algorithm 2. QR Factorization. Function chol(⋅) returns the Cholesky factorization of a matrix

Input : P ∈ R
m×𝓁 .

Output: P ∈ R
m×𝓁 and R ∈ R

𝓁×𝓁 .

1 B = 0𝓁×𝓁 ; // Initialize B with all 0

2 s = m∕b ; // # of blocks

3 for j = 1 to s do

4 B += P⊤

(J,∶)P(J,∶)

5 end

6 R = chol(B) ; // factored on CPU

7 for j = 1 to s do

8 P(J,∶) = P(J,∶)R−1

9 end
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The basic scheme can be easily improved by reorganizing the loop structure. Algorithm 3 presents the FIFO scheme that requires less

access to A. As shown in lines 7 to 9, the execution order of iterations for computing Q is reversed such that blocks of A(J,:) from the first

GEMM in line 5 can be reused for that for the second GEMM in line 8; the data transfer of A(J,:) occurs only before the first GEMM in line 5,

where the CUDA kernel is invoked from the CPU. As compared with the basic scheme, this data reuse on the GPU reduces the amount of

CPU-GPU data transfer; at the same time, the reduced amount depends on the number of blocks that can be stored at once in the GPU

memory (Table 1). In addition to this data reuse, blocks can be further reused across different iterations, that is, the second GEMM at the

current ith loop can be reused for the first GEMM at the next (i + 1)th loop. Note that the worst case of mn + 2q(m − b)n occurs when the

GPU memory can hold only a single block of A(J,:); all blocks of the total size mn are sent to the GPU at the first data access to A (i =
1, lines 4-6), then a block of b × n entries is reused 2q times by the following GEMM. By contrast, the best case of mn can be obtained

when the GPU memory can hold all blocks of A(J,:); however, this contradicts to our assumption that data size exceeds the GPU memory

capacity.

Algorithm 3. FIFO scheme. This method replaces lines 2 to 8 of Algorithm 1

Input : A ∈ R
m×n,Q ∈ R

n×𝓁 , block size b and power iteration count q.

Output: P ∈ R
m×𝓁 ,Q ∈ R

n×𝓁 and B ∈ R
𝓁×𝓁 .

1 B = 0𝓁×𝓁 ; // Initialize B with all 0

2 s = m∕b ; // # of blocks

3 for i = 1 to q do

4 for j = 1 to s do

5 P(J,∶) = A(J,∶)Q;
6 end

7 for j = s to 1 do

8 Q += A⊤

(J,∶)P(J,∶) ; // reuse 1D blocks

9 end

10 [Q, ∼] = qr(Q);

11 end

12 for j = 1 to s do

13 P(J,∶) = A(J,∶)Q;
14 B += P⊤

(J,∶)P(J,∶);

15 end

5.2 Fused method for reducing out-of-core data access

The amount of CPU-GPU data transfer can be further reduced by taking the advantage of the fact that the orthogonalization of P in line

4 of Algorithm 1 can be omitted in many practical applications, as mentioned in Section 3. Algorithm 4 shows the Fused method that skips

the orthogonalization of P. Consequently, the two block GEMM operations in lines 5 and 8 of Algorithm 3 can be processed in a single

Fused loop, as shown in lines 6-7 and 11-12 of Algorithm 4. After this loop fusion, the two GEMM operations are performed with the

same block A(J,:) to compute P(J,:) and Q̃ before accessing the next block; the if-else statement in lines 4 to 14 is used to process A(J,:)

in inverse order such that the blocks can be reused in the next i loop. Consequently, the matrix A is transferred only once in every iter-

ation, and thus, the amount of CPU-GPU data transfer is reduced to (q + 1)mn. Combined with the FIFO scheme, the worst case of mn +
q(m − b)n occurs when only a single block of P(J,:) is reused, whereas the best case of mn is obtained when all blocks are reused at all GEMM

operations.

Recall here that each block GEMM operation is processed by calling the GEMM kernel, which runs on the GPU. Therefore, the if-else state-

ment in Algorithm 4, which exists outside the CUDA kernel function, is executed on the CPU. Consequently, there is no concern on warp divergence

issues,52 which degrade the performance on the GPU.

The Fused method requires an additional memory space for storing Q̃, which has the same size as the sampling matrix Q. However, this additional

cost is negligible because the size of Q is assumed to be small (𝓁 × 𝓁). With respect to the number of data passes, the Fused method requires the

same number 2q + 1 of data passes as the basic scheme.
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Algorithm 4. Fused method. This method replaces lines 2 to 11 of Algorithm 3

Input : A ∈ R
m×n, Q ∈ R

n×𝓁 , block size b and power iteration count q.

Output: P ∈ R
m×𝓁 and Q ∈ R

n×𝓁 .

1 Q̃ = 0n×𝓁 ; // Initialize Q̃ with all 0

2 s = m∕b ; // # of blocks

3 for i = 1 to q do

4 if i%2 == 1 then

5 for j = 1 to s do

6 P(J,∶) = A(J,∶)Q;
7 Q̃ += A⊤

(J,∶)P(J,∶) ; // reuse 1D blocks

8 end

9 else

10 for j = s to 1 do

11 P(J,∶) = A(J,∶)Q;
12 Q̃ += A⊤

(J,∶)P(J,∶) ; // reuse 1D blocks

13 end

14 end

15 [Q, ∼] = qr(Q̃);

16 end

5.3 Gram method for reducing in-core and out-of-core data access

Similar to the Fused method, the Gram method skips the orthogonalization of P in line 4 of Algorithm 1. Therefore, every power iteration computes

the following equation:

Q = orth(A⊤(AQ)). (4)

We explicitly form the Gram matrix as G = A⊤A ∈ R
n×n, and thereby, Equation (4) is mathematically equivalent to the following equation:

Q = orth(A⊤(AQ)) = orth((A⊤A)Q) = orth(GQ). (5)

As mentioned in Section 2.1, forming the Gram matrix is usually avoided due to its high computation cost; however, we do this to reduce the

number of data passes, that is, the amount of in-core and out-of-core data access.

Algorithm 5 lists a pseudocode of our proposed Gram method. The power method is applied to the Gram matrix G without accessing A in lines

6 to 9 of Algorithm 5, so that the number of data passes is reduced to 3, which is independent from q. These q-independent passes prevent the

performance degradation if some data present a slow singular decay pattern that requires more power iterations to form the approximation.18 In

this case, the communication cost with more passes to A incurs a tremendous burden on the narrow CPU-GPU bandwidth.

Algorithm 5. Gram method. This method replaces line 1 to 11 of Algorithm 3

Input : A ∈ R
m×n, Q ∈ R

n×𝓁 and block size b.

Output: Q ∈ R
n×𝓁 .

1 G = 0n×n ; // Initialize G with all 0

2 s = m∕b ; // # of blocks

3 for j = 1 to s do // G = A⊤A: form Gram matrix with 1D partition of A

4 G += A⊤

(J,∶)A(J,∶)

5 end

6 for i = 1 to q do

7 Q = GQ;
8

[
Q, ∼

]
= qr(Q);

9 end
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For 1D partition of A, GEMM operations for forming G (lines 3-5 of Algorithm 5) can be processed with the data transfer cost of mn. However,

the Gram method increases the number of floating-point operations from (2q + 1)mn𝓁 to mn2 + qn2𝓁 + mn𝓁; mn2 and qn2𝓁 correspond to lines 3-5

and 6-9 of Algorithm 5, respectively. Despite this extra computation, the Gram method reduces the amount of CPU-GPU data transfer to less than

2mn when combined with the FIFO scheme (Table 1). Considering the large gap between the communication cost and computational cost, we believe

that forming G reduces the overall run time at the expense of increased floating-point operations. We experimentally validate this assumption in

Section 6.

5.4 Implementation details

We implemented all of the proposed methods with the underlying GEMM operations tuned in Section 4.3. In addition, we integrated the following

techniques into our RSVD solver.

Kernel optimization: The MAGMA library,37 which wraps the CUDA library, was deployed for all GEMM operations, GPU initialization, memory

management, and data transfer. The MAGMA library assumes that (1) matrices are stored in column-major format and (2) the leading dimen-

sion of matrices are round up to multiples of 32. These assumptions are useful for maximizing effective memory bandwidth by achieving memory

access coalescing52 on the GPU. For QR and deterministic SVD computations on the CPU, we used the potrf() andgesvd() routines included in

LAPACK,40 respectively.

Software pipeline: A double buffering approach was implemented to realize a software pipeline mechanism to overlap CUDA kernel execution

with CPU-GPU data transfer. In more detail, our solver creates two CUDA streams52 per GPU. Each stream, wrapped inside the MAGMA queue

structure,37 runs asynchronously so that overlapping can be achieved to maximize the entire performance. For the GEMM operation at line 5 of

Algorithm 3, a CUDA stream calls a single cuBLAS CUDA kernel on a buffer while another stream executes data transfer on another buffer.

Multi-GPU execution: Our solver assigns matrix blocks to GPUs in a round-robin fashion. For the FIFO and Fused methods, each GPU obtains

intermediates of B and Q after processing assigned blocks. The solver then transfers Q to the CPU to process the QR factorization with thepotrf()

routine on the CPU. Finally, the CPU calls the axpy() routine to form B and Q from all the intermediates. A similar approach was used to obtain

matrix G for the Gram method. We used a single GPU to compute the power iteration process in lines 6 to 9 of Algorithm 5 because Q and G are

small enough to fit into a single GPU memory.

6 EXPERIMENTAL RESULTS

We now evaluate the proposed methods in terms of the performance and numerical stability. In the following discussion, the CPU-GPU data transfer

time was taken into account for the measured performance in flop/s.

We also compare the proposed methods with the previous methods. We implemented a CPU-based method using the LAPACK library for ref-

erence. The CPU-based method was multithreaded using OpenMP directives.59 Intel MKL 11.3.1 was linked to LAPACK for BLAS routines. We

thoroughly tuned the solver to gain the highest performance on our experimental CPUs. All implementations were compiled using GNU C++ 7.4.0

and CUDA 10.1.

All experiments were conducted in double precision using two Intel Xeon Silver 4114 CPUs and two NVIDIA Tesla V100 GPUs. These CPUs had

384 GB of DDR4-2666 main memory and provided a double precision peak performance of 0.9 Tflop/s in total.

6.1 Performance evaluation

We applied the proposed schemes to the basic scheme step by step to investigate the performance impact of each scheme; (1) the basic method (the

basic scheme in Section 5.1), (2) the FIFO method (the FIFO scheme in Section 5.1), (3) the Fused method (Section 5.2), and (4) the Gram method

(Section 5.3). For the power iteration count, we used q = 1,4, and 8, which covers from low to high-accuracy approximation. Note that with q = 4,

RSVD achieved almost the same level of accuracy as the deterministic SVD (Section 6.3). Figure 6 shows the RSVD performance measured with dif-

ferent numbers of rows m. In Figure 6, the FIFO method slightly reduced the overall runtime by approximately 10%. Furthermore, the Fused method

increased the basic performance by reducing the amount of CPU-GPU data transfer D from (2q + 1)mn to less than (q + 1)mn, which corresponds

to at most 33%, 42%, and 44% reductions for q = 1, 4, and 8, respectively. Accordingly, the overall execution time was reduced by 24.2%, 37.8%, and

42.5% for q = 1, 4, and 8, respectively. Thus, the gap between the reduction rate on execution time and that on data transfer amount became closer

as we increased q. To understand this behavior, we investigated the time breakdowns of the Fused method; the proportion other than GEMM opera-

tions dropped from 12.5% to 6.7%, which implies that reducing data transfer amount increased its impact as q increased. Overall, the Fused method

achieved up to 1.7× speedup over the basic method.
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(A) (B) (C)

F I G U R E 6 RSVD execution time a single Tesla V100 GPU with different numbers of rows m. Results for power iteration counts, A, q = 1, B,
q = 4, and C, q = 8. Matrix sizes were n = 5000 and 𝓁 = 500. The results are shown in execution time instead of flop/s because the flop counts of
the Gram method are different from others. CPU-based results are omitted to focus on GPU-based results. GPU, graphics processing unit; RSVD,
randomized singular value decomposition

F I G U R E 7 Speedup of one
Tesla V100 GPU over two Xeon

Silver 4114 CPUs with different
numbers of rows m. Results for
power iteration counts, A, q = 1,
B, q = 4, and C, q = 8. Matrix sizes

were n = 5000 and 𝓁 = 500. For
each method, we executed a
multithreaded version of
Algorithm 1 on two CPUs to
compute the speedup. GPU,

graphics processing unit

(A) (B) (C)

Regarding the performance of the Gram method, the execution time for m = 9.2 × 105 remained at approximately 12 s, which was indepen-

dent of q. In fact, the proportions of GEMM in the Gram method maintained at 93% from q = 1 to q = 8 with m = 9.2 × 105. With q = 1, the Gram

method performed slightly worse than the Fused method due to increased computation cost. Comparatively, the execution time of the Fused method

increased from 12.2 s in Figure 6A to 38.2 s in Figure 6B with m = 9.2 × 105. With q = 8 and m = 9.2 × 105 in Figure 6C, the execution times of the

Gram and Fused methods were 12.7 s and 38.2 s, respectively. This 3.0× speedup of the Gram method was achieved by further reducing D from

(q + 1)mn to 2mn via Gram matrix computation. Overall, the Gram method improved the performance by up to 5.2× over the basic method.

Figure 7 shows the speedup of one GPU over two CPUs with different numbers of rows m. The speedup gradually increased for all methods

as we increased q, because the proportion of GEMM increased with q and the GPU performed better than CPUs for GEMM operations. The Gram

method achieved up to 70× speedup over two CPUs with q = 8 in Figure 7C.

Figure 8 shows that all proposed methods achieved similar speedups over one GPU, demonstrating efficient scaling on two GPUs. However,

when m ≤ 1 × 105, the speedups were at most 1.7× because the GPU initialization time surpassed the performance gain provided by two GPUs.

We next focus on the Fused and Gram methods to investigate the performance with different numbers of columns n and different

power iteration count q (Figure 9). As shown in Figure 9A, the Gram performance was independent from q, as explained in Section 5.3.

Thus, the additional computational cost needed for forming the Gram matrix had a limited impact on the GPU-based RSVD performance.

In fact, the number (qn2𝓁) of floating-point operations for power iteration is much smaller than that (mn2) for forming the Gram matrix

G. Consequently, the measured run time for power iteration was less than 1% of that for forming the Gram matrix on our experimental

machine.

As shown in Figure 9A, for a small power iteration number (q = 1), the Fused method outperformed the Gram method. In particular, their

gap increased with n. The reason for this behavior is that the Gram method has a higher computation cost (mn2 + n2𝓁 + mn𝓁) than the Fused

method (3mn𝓁) when q = 1. In particular, the computation cost for forming the Gram matrix, that is, mn2, made the Gram method slower com-

pared with the Fused method when n ≥ 1 × 104. As for the data transfer cost D, when q = 1, there was no significant difference between the Fused

and Gram methods; the data transfer cost for both methods was approximately 2mn when q = 1 (Table 1). However, when we increased the power
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F I G U R E 8 Speedup of two
Tesla V100 GPUs over one V100
GPU with different numbers of
rows m. Results for power iteration

counts, A, q = 1, B, q = 4, and C,
q = 8. Matrix sizes were n = 5000

and 𝓁 = 500. For each method, we
executed the same method on a
single GPU to compute the speedup.

GPU, graphics processing unit

(A) (B) (C)

F I G U R E 9 RSVD performance comparison of Fused and Gram methods with different numbers of columns n and different power iteration

count q. A, Execution time on a single Tesla V100 GPU, B, speedup of one GPU over two Xeon Silver 4114 CPUs, and C, speedup of two GPUs over
one GPU. Matrix sizes were m = 4 × 105 and 𝓁 = n∕10. We executed a multithreaded version of Algorithm 1 to compute the speedup over two
CPUs in B. For each method in C, the same method was executed to compute the speedup over a single GPU. GPU, graphics processing unit; RSVD,
randomized singular value decomposition

iteration count to q = 4, the cost D for the Fused method increased to approximately 5mn, whereas that for the Gram method remained 2mn. Con-

sequently, the Gram method was twice as fast as the Fused method when q = 4 and n < 0.6 × 104 in Figure 9A. Thus, the Gram method is robust for

large q values but sensitive to large n values, whereas the Fused method is robust for large n values but sensitive to large q values. Therefore, we

think that the Gram method is useful especially when a large number of iterations is required to acquire a high-accuracy approximation.

Figure 9B shows the speedup of one GPU over two CPUs. The speedup of the Fused method was up to 17× for different q. Comparatively, the

speedup of the Gram method gradually increased from 7× to 24× as we increased power iteration count from q = 1 to q = 8. Figure 9C shows the

speedup of two GPUs over one GPU. The performance was slightly better than the growing height case in Figure 8, achieving 1.5 to 1.9× speedups.

Figure 10 shows the breakdown of the execution time obtained with the Gram method. We used two experimental setups: (a) increasing the

height m of the matrix A with the fixed width and (b) increasing the width n of the matrix A with the fixed height. Figure 10A demonstrates that the

proportion of GEMM execution gradually increased with m and reached 90%. This behavior was due to the computational cost of GEMM (mn2 +
qn2𝓁 + mn𝓁), which increases linearly with m, whereas that of SVD is fixed to (n3). Consequently, GEMM operations dominate the computation

for extremely tall-skinny matrices.

By contrast, the proportion of SVD gradually increased with n and reached 24% of the total time when n = 2.4×104 for A transformed from

tall-skinny to square-like Figure 10B. This was due to the computational cost of SVD and GEMM,(n3) and mn2 + qn2𝓁 + mn𝓁, respectively. Assum-

ing that GEMM is parallelizable while other operations are not, parallel GEMM can achieve a linear speedup (Figure 10A). By contrast, the theoretical

speedup for situations similar to that shown in Figure 10B is limited to at most 5× according to the Amdahl's law.60

6.2 Performance comparison

We next compared the proposed methods with the previous methods in terms of the out-of-core RSVD performance. As a comparative

method, we used cuBLAS-XT50 as a GPU-accelerated method. According to our preliminary results reported in Section 4, we maximized
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F I G U R E 10 Breakdown of execution time on a single Tesla
V100 GPU with 𝓁 = n∕10 and q = 4. Results of A, growing height m
of A with fixed width n = 5000 and of B, growing width n of A with
fixed height m = 1 × 105. GEMM includes the time of CPU-GPU

data transfer and GEMM operations. SVD denotes the
deterministic SVD of matrix B. Misc. is composed of initialization
and random matrix generation. GEMM, general matrix-matrix
multiplication; GPU, graphics processing unit; SVD, singular value
decomposition

(A) (B)

(A) (B) (C)

F I G U R E 11 Comparison of CPU-based method, cuBLAS-XT,50 and the proposed Fused method with different matrix shapes. A, Rectangular
with m ∶ n ∶ 𝓁 = 100 ∶ 10 ∶ 1, B, tall-skinny with m ∶ n ∶ 𝓁 = 1000 ∶ 10 ∶ 1, and C, extremely tall-skinny with m ∶ n ∶ 𝓁 = 10000 ∶ 10 ∶ 1.
Results obtained on a single Tesla V100 GPU are presented in flop/s. Power iteration count was q = 4. The CPU-based method was multithreaded
using two Xeon Silver 4114 CPUs. Note that the horizontal scale is different in three setups because we set the maximum input matrix size to the

maximum memory size that our system can hold. GPU, graphics processing unit

the GEMM performance by applying the row-wise 1D partition to cuBLAST-XT. With respect to the proposed method, we used the Fused

method to compare the RSVD performance in Tflop/s because all methods, except the Gram method, had the same number of floating-point

operations.

We varied the matrix setup m ∶ n ∶ 𝓁 from 100 ∶ 10 ∶ 1 to 10000 ∶ 10 ∶ 1 to investigate the out-of-core RSVD performance (Figure 11). We

first used a rectangular matrix setup where m ∶ n ∶ 𝓁 = 100 ∶ 10 ∶ 1. Figure 11A demonstrates that all GPU-based methods achieved 4 Tflop/s,

which outperformed the CPU-based method (approximately 0.35 Tflop/s); the basic, FIFO, and cuBLAS-XT methods showed similar performance,

whereas the Fused method achieved the highest flop/s. The GPU-based methods achieved approximately 14× higher flop/s than the CPU-based

method. This performance gap came from that the deployed CPUs provided a theoretical peak performance of 0.9 Tflop/s, which was one-fifteenth

as compared with that of a single V100 GPU. The second setup in Figure 11B used tall-skinny matrices where m ∶ n ∶ 𝓁 = 1000 ∶ 10 ∶ 1. The GPU

performance dropped with the increasing ratio of m ∶ n and achieved a maximum of 2.6 Tflop/s. On the other hand, the CPUs still resulted in around

0.35 Tflop/s. The third setup in Figure 11C was obtained with the extremely tall-skinny matrices where m ∶ n ∶ 𝓁 = 10000 ∶ 10 ∶ 1. The GPU perfor-

mance dropped to 0.95 Tflop/s, but the achieved performance was still higher than that on the CPUs (0.3 Tflop/s). The CPU performance stagnated

and dropped slightly after m > 1.2 × 106. Thus, the CPU performance was less sensitive to input matrix shapes than the GPU performance. In sum-

mary, the GPU-based methods outperformed the CPU-based method for square-like input matrices. However, the performance advantage over

multicore CPUs dropped as we increased the m ∶ n ratio. The main reason is that with the increasing m ∶ n ratio from 10 ∶ 1 to 1000 ∶ 1, the GEMM

operations in RSVD get close to GEMV operations which are less efficient for GPUs.

We then used two GPUs to demonstrate the scalability of each implementation. As shown in Figure 12, the proposed methods scaled well on two

GPUs, achieving speedups of up to 1.9× over one GPU. The performance gap between cuBLAS-XT and our methods increased significantly on two

GPUs. The speedups of cuBLAS-XT were about 0.9 to 1.2× in all setups. While cuBLAS-XT was enforced to 1D partition, we failed to make cuBLAS-XT

to perform similar to our 1D scheme that was free of reduction between GPUs. The excessive data transfer of both CPU-GPU and GPU-GPU was

the main reason for the performance degradation.
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(A) (B) (C)

F I G U R E 12 Speedup of two Tesla V100 GPUs over one V100 GPU with different matrix shapes: Results for, A, rectangular matrices with
m ∶ n ∶ 𝓁 = 100 ∶ 10 ∶ 1, B, tall-skinny matrices with m ∶ n ∶ 𝓁 = 1000 ∶ 10 ∶ 1, and C, extremely tall-skinny matrices with
m ∶ n ∶ 𝓁 = 10000 ∶ 10 ∶ 1. Power iteration count was q = 4. For each method, the same method was executed to compute the speedup. GPU,
graphics processing unit

Original RSVD Gram method

Data Deterministic SVD q = 1 q = 4 q = 1 q = 4

Geometric distribution 0.5204 0.5297 0.5204 0.5302 0.5204

Exponential distribution 0.6622 0.6828 0.6623 0.6830 0.6623

FERET61 0.1661 0.1690 0.1661 0.1690 0.1661

Abbreviations: RSVD, randomized singular value decomposition; SVD, singular value decomposition.

TA B L E 2 Comparison of
approximation error‖‖‖A − Â‖‖‖F

∕‖A‖F with different

SVD methods and different
power iteration count q

6.3 Numerical study with synthetic and real data

We used synthetic and real data to evaluate the numerical stability of the following three methods: (1) a deterministic SVD method provided by

LAPACK,40 (2) the original RSVD method18 that orthogonalizes both P and Q, and (3) the proposed Gram method.

We used two different singular value distributions for the synthetic data: geometric and exponential distributions. For the geometric distribu-

tion, the j-th singular value 𝜎j was defined as 𝜎j = 𝜎1𝛾
j−1 with the parameter 𝛾 = 0.99. For the exponential distribution, the j-th singular value 𝜎j was

defined as 𝜎j = 𝜎1e−j/𝛽 with the parameter 𝛽 = 160. The matrix size m × n was set to 10000 × 5000 with the sampling parameters k = 64 and o = 64.

The real data came from the facial recognition technology dataset61 containing human face images. All 25 389 images were resized to the resolution

of 512 × 768 pixels, and thus the input matrix consisted of 393216 × 25389 entries.

Table 2 shows the approximation error ‖‖‖A − Â|||F
∕ ‖A|F , where ‖⋅‖F denotes the Frobenius norm. When q = 4, the Gram method achieved similar

errors compared with those of the original RSVD and deterministic SVD methods. By contrast, when q = 1, there were small differences across

these methods. Thus, increasing the number q of power iterations slightly improved the accuracy for randomized methods. Hence, the Gram method

achieved the same level of accuracy as the deterministic SVD method without the orthogonalization of P (line 4 of Algorithm 1).

7 CASE STUDY WITH RPCA

Finally, we demonstrate the performance of out-of-core RSVD with an RPCA application.10 RPCA is a common method in computer vision and

machine learning, which recovers a low-rank matrix with an unknown fraction of data corruption.10 While being effective, RPCA algorithms are

computationally demanding due to iterative SVD operations required to reveal the singular values for thresholding.

Algorithm 6 lists a pseudocode of the RPCA algorithm,10,62 which separates the sparse corruptions S from the original data M so that a low-rank

matrix L can be obtained as L = M − S. The problem can be written as

min
L,S

||L||∗ + 𝜆||S||1 subject to M = L + S, (6)
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F I G U R E 13 An execution example of RPCA. A, Input image, B, low-rank image, and C, sparse image. RPCA, robust principal component analysis

where || ⋅ ||∗ and || ⋅ ||1 denote the nuclear norm and 𝓁1 norm of a matrix, respectively, and 𝜆 is a positive weighting parameter that is usually set

to 𝜆 = 1∕
√

max(m, n). Various solvers have been proposed for this convex optimization problem, and recent solution methods drastically improved

the computation efficiency.62-64 Similar to Oh et al,12 we used an RSVD solver to replace the deterministic SVD solver in RPCA to accelerate the

computation. The shrinkage operator 𝜀 [⋅] in line 4 of Algorithm 6 is defined as

𝜀 [x] =

⎧⎪⎪⎨⎪⎪⎩

x − 𝜀, if x > 𝜀,

x + 𝜀, if x < −𝜀,

0, otherwise,

(7)

where 𝜀 represents the threshold value.

Algorithm 6. RPCA by RSVD

Input : matrix M ∈ R
m×n, target rank k, oversampling parameter o, power iteration count q, convergence condition t and parameters 𝜇0

and 𝜌.

Output: low-rank matrix L ∈ R
m×n and sparse matrix S ∈ R

m×n.

1 Y0 = M ∕ max(||M||2, 𝜆
−1||M||∞); S0 = 0m×n; i = 0;

2 while TRUE do

3 [U,Σ,VT] = rsvd(M − Si + 𝜇i
−1Yi , k, o, q);

4 Li+1 = U𝜇i
−1 [Σ]VT ; // shrinkage operation on Σ

5 Si+1 = 𝜆𝜇i
−1 [M − Li+1 + 𝜇i

−1Yi];
6 Zi+1 = M − Li+1 − Si+1;

7 Yi+1 = Yi + 𝜇iZi+1;

8 if ( ||Zi+1||F ∕ ||M||F < t ) break; // evaluate convergence

9 𝜇i+1 = 𝜌𝜇i; i = i + 1;

10 end

In Algorithm 6, GEMM operations appear in lines 3 to 4, whereas all other computations are vector summations. GEMM operations have a

higher operational intensity than vector summations, which cannot be efficiently offloaded to GPUs. Therefore, we decided to call LAPACK routines

to implement vector summations on the CPU. On the other hand, we used the Gram method for RSVD in line 3 and the out-of-core GEMM with 1D

partition for the reconstruction of L at line 4. Vector summations were implemented on the CPU with LAPACK routines.

All experiments were conducted in double precision using the same machine described in Section 4. The sampling parameters for RSVD were

k = 100, o = 100, and q = 4. The parameters in Algorithm 6 were set as t = 10−6, 𝜌 = 1.5, 𝜇0 = 1.5∕||M||∞ , and 𝜀 = 𝜇−1
i

. As for data, we used a

high definition traffic video that was heavily corrupted by camera jittering and a large traffic volume. We extracted 1000 frames with a resolu-

tion of 1920×1080. Therefore, the input matrix M is of size 2073600 × 1000. Figure 13 illustrates a sample frame output, which indicates that our

implementation successfully separated the input data into sparse traffic noise and the low-rank background.

Table 3 compares the RPCA performance measured on the experimental machine. Compared with a multicore CPU implementation, our

GPU-accelerated Gram method accelerated the RSVD computation by 23.3×, which halved the total RPCA time. This speedup is reasonable accord-

ing to the out-of-core GEMM performance presented in Figure 7B; the acceleration on two GPUs over two 10-core CPUs was up to 35× for

out-of-core RSVD. Figure 3A; the highest performances on two GPUs and two CPUs were about 2.5 and 0.22 Tflop/s, respectively, demonstrating

a speedup of 11.4× for out-of-core GEMM. The highest performances on two GPUs and two CPUs were about 2.5 and 0.22 Tflop/s, respectively,
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Breakdown CPU (s) GPU (s)

RSVD 1120 48

Misc. 951 46

Total RPCA 2071 994

Note: Both implementations converged with

the same number (28) of iterations.

Abbreviations: GPU, graphics processing unit;

RPCA, robust principal component analysis;

RSVD, randomized singular value

decomposition.

TA B L E 3 Execution time of RPCA based on two Xeon Silver 4114 CPUs and two Tesla V100
GPUs

demonstrating a speedup of 11.4× for out-of-core GEMM in Figure 3A. However, the maximum performance of two Tesla V100 GPUs was close

to 14 Tflop/s (Figure 3B), implying that the data size was not sufficiently large to maximize the performance on the GPU. By accelerating RSVD

with GPUs, the performance bottleneck of RPCA moved to the vector summation part, which has a low operational intensity. The acceleration of

out-of-core algorithms with a low operational intensity, such as vector summation, is still limited by the CPU-GPU transfer bandwidth, which is a

challenge to fully utilize GPUs.

8 CONCLUSION

Over the past decade, randomized algorithms have shown significant advancements in terms of the computation efficiency. However, there have

not been many attempts to harness the modern computing architectures such as GPU accelerators. The likely explanation is that GPUs are still

considered as specialized devices. At the same time, large-scale computing is now performed on supercomputers that are prevalently equipped with

accelerators; hence, developing new algorithms for evolving computing architectures is becoming urgent.

We studied GPU-accelerated methods, namely, Fused and Gram, to reduce out-of-core data access for computing randomized SVD. The Gram

method, which was especially effective for tall-skinny matrices, achieved up to 5.2× speedup compared with a straightforward method that deploys

the highly tuned GEMM scheme and the 1D data partition scheme. The Fused method effectively accelerated the RSVD up to 1.7× compared

with the straightforward method. This work allows us to see the directions of the randomized algorithm development as we move toward exascale

computing. Most immediate direction is the independent block operations which fit accelerators.

Our analysis and empirical results also revealed that CPU-GPU transfer bandwidth limits the RSVD performance on a common workstation,

especially for tall-skinny matrices that limits the scalability on GPUs. This constraint is expected to be mitigated with the introduction of the next

generation PCIe and NVlink buses. Nevertheless, reducing the amount of data access and communication remains the major challenge in developing

scalable linear algebra algorithms for both single- and multi-node systems. This is also our main focus in the future.
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