![]() |
MAGMA
2.7.0
Matrix Algebra for GPU and Multicore Architectures
|
Functions | |
| magma_int_t | magma_cgetf2_nopiv_batched (magma_int_t m, magma_int_t n, magmaFloatComplex **dA_array, magma_int_t ai, magma_int_t aj, magma_int_t ldda, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue) |
| CGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting. More... | |
| magma_int_t | magma_dgetf2_nopiv_batched (magma_int_t m, magma_int_t n, double **dA_array, magma_int_t ai, magma_int_t aj, magma_int_t ldda, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue) |
| DGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting. More... | |
| magma_int_t | magma_sgetf2_nopiv_batched (magma_int_t m, magma_int_t n, float **dA_array, magma_int_t ai, magma_int_t aj, magma_int_t ldda, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue) |
| SGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting. More... | |
| magma_int_t | magma_zgetf2_nopiv_batched (magma_int_t m, magma_int_t n, magmaDoubleComplex **dA_array, magma_int_t ai, magma_int_t aj, magma_int_t ldda, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue) |
| ZGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting. More... | |
| magma_int_t magma_cgetf2_nopiv_batched | ( | magma_int_t | m, |
| magma_int_t | n, | ||
| magmaFloatComplex ** | dA_array, | ||
| magma_int_t | ai, | ||
| magma_int_t | aj, | ||
| magma_int_t | ldda, | ||
| magma_int_t * | info_array, | ||
| magma_int_t | gbstep, | ||
| magma_int_t | batchCount, | ||
| magma_queue_t | queue | ||
| ) |
CGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting.
The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.
| [in] | m | INTEGER The number of rows of each matrix A. M >= 0. |
| [in] | n | INTEGER The number of columns of each matrix A. N >= 0. |
| [in,out] | dA_array | Array of pointers, dimension (batchCount). Each is a COMPLEX array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
| [in] | ai | INTEGER Row offset for A. |
| [in] | aj | INTEGER Column offset for A. |
| [in] | ldda | INTEGER The leading dimension of each array A. LDDA >= max(1,M). |
| [out] | info_array | Array of INTEGERs, dimension (batchCount), for corresponding matrices.
|
| [in] | gbstep | INTEGER internal use. |
| [in] | batchCount | INTEGER The number of matrices to operate on. |
| [in] | queue | magma_queue_t Queue to execute in. |
| magma_int_t magma_dgetf2_nopiv_batched | ( | magma_int_t | m, |
| magma_int_t | n, | ||
| double ** | dA_array, | ||
| magma_int_t | ai, | ||
| magma_int_t | aj, | ||
| magma_int_t | ldda, | ||
| magma_int_t * | info_array, | ||
| magma_int_t | gbstep, | ||
| magma_int_t | batchCount, | ||
| magma_queue_t | queue | ||
| ) |
DGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting.
The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.
| [in] | m | INTEGER The number of rows of each matrix A. M >= 0. |
| [in] | n | INTEGER The number of columns of each matrix A. N >= 0. |
| [in,out] | dA_array | Array of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
| [in] | ai | INTEGER Row offset for A. |
| [in] | aj | INTEGER Column offset for A. |
| [in] | ldda | INTEGER The leading dimension of each array A. LDDA >= max(1,M). |
| [out] | info_array | Array of INTEGERs, dimension (batchCount), for corresponding matrices.
|
| [in] | gbstep | INTEGER internal use. |
| [in] | batchCount | INTEGER The number of matrices to operate on. |
| [in] | queue | magma_queue_t Queue to execute in. |
| magma_int_t magma_sgetf2_nopiv_batched | ( | magma_int_t | m, |
| magma_int_t | n, | ||
| float ** | dA_array, | ||
| magma_int_t | ai, | ||
| magma_int_t | aj, | ||
| magma_int_t | ldda, | ||
| magma_int_t * | info_array, | ||
| magma_int_t | gbstep, | ||
| magma_int_t | batchCount, | ||
| magma_queue_t | queue | ||
| ) |
SGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting.
The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.
| [in] | m | INTEGER The number of rows of each matrix A. M >= 0. |
| [in] | n | INTEGER The number of columns of each matrix A. N >= 0. |
| [in,out] | dA_array | Array of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
| [in] | ai | INTEGER Row offset for A. |
| [in] | aj | INTEGER Column offset for A. |
| [in] | ldda | INTEGER The leading dimension of each array A. LDDA >= max(1,M). |
| [out] | info_array | Array of INTEGERs, dimension (batchCount), for corresponding matrices.
|
| [in] | gbstep | INTEGER internal use. |
| [in] | batchCount | INTEGER The number of matrices to operate on. |
| [in] | queue | magma_queue_t Queue to execute in. |
| magma_int_t magma_zgetf2_nopiv_batched | ( | magma_int_t | m, |
| magma_int_t | n, | ||
| magmaDoubleComplex ** | dA_array, | ||
| magma_int_t | ai, | ||
| magma_int_t | aj, | ||
| magma_int_t | ldda, | ||
| magma_int_t * | info_array, | ||
| magma_int_t | gbstep, | ||
| magma_int_t | batchCount, | ||
| magma_queue_t | queue | ||
| ) |
ZGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting.
The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.
| [in] | m | INTEGER The number of rows of each matrix A. M >= 0. |
| [in] | n | INTEGER The number of columns of each matrix A. N >= 0. |
| [in,out] | dA_array | Array of pointers, dimension (batchCount). Each is a COMPLEX_16 array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
| [in] | ai | INTEGER Row offset for A. |
| [in] | aj | INTEGER Column offset for A. |
| [in] | ldda | INTEGER The leading dimension of each array A. LDDA >= max(1,M). |
| [out] | info_array | Array of INTEGERs, dimension (batchCount), for corresponding matrices.
|
| [in] | gbstep | INTEGER internal use. |
| [in] | batchCount | INTEGER The number of matrices to operate on. |
| [in] | queue | magma_queue_t Queue to execute in. |